Wagner Patrick

No Thumbnail Available
Last Name
Wagner
First Name
Patrick
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Late 20th century Indian Ocean heat content gain masked by wind forcing
    (American Geophysical Union, 2020-10-26) Ummenhofer, Caroline C. ; Ryan, Svenja ; England, Matthew H. ; Scheinert, Markus ; Wagner, Patrick ; Biastoch, Arne ; Böning, Claus W.
    Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
  • Article
    Depth structure of Ningaloo Niño/Niña events and associated drivers
    (American Meteorological Society, 2021-02-04) Ryan, Svenja ; Ummenhofer, Caroline C. ; Gawarkiewicz, Glen G. ; Wagner, Patrick ; Scheinert, Markus ; Biastoch, Arne ; Böning, Claus W.
    Marine heatwaves along the coast of Western Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward; however, little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global ocean general circulation model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958 and 2016, with a focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant, and extend down to 300-m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, that is more common and persistent during the negative phase of the interdecadal Pacific oscillation. It is shown that Ningaloo Niños during La Niña phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere–ocean feedbacks, without a clear imprint on salinity and velocity.
  • Article
    Freshwater contributions to decadal variability of the Indonesian Throughflow
    (American Geophysical Union, 2023-07-26) Wang, Shouyi ; Ummenhofer, Caroline C. ; Oppo, Delia W. ; Murty, Sujata A. ; Wagner, Patrick ; Boning, Claus W. ; Biastoch, Arne
    The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo-Pacific climate through its inter-basin redistribution of heat and freshwater. Observational studies suggest that wind-driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (<15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind-driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper-ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower-latitude western boundary current interactions that affect the SCS circulation.