Morrison Adele K.

No Thumbnail Available
Last Name
Morrison
First Name
Adele K.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Author Correction : Spiraling pathways of global deep waters to the surface of the Southern Ocean
    (Nature Publishing Group, 2018-01-15) Tamsitt, Veronica ; Drake, Henri F. ; Morrison, Adele K. ; Talley, Lynne D. ; Dufour, Carolina O. ; Gray, Alison R. ; Griffies, Stephen M. ; Mazloff, Matthew R. ; Sarmiento, Jorge L. ; Wang, Jinbo ; Weijer, Wilbert
    Correction to: Nature Communications 8:172 https://doi.org/10.1038/s41467-017-00197-0; Article published online: 2 August 2017
  • Article
    Lagrangian timescales of Southern Ocean upwelling in a hierarchy of model resolutions
    (John Wiley & Sons, 2018-01-31) Drake, Henri F. ; Morrison, Adele K. ; Griffies, Stephen M. ; Sarmiento, Jorge L. ; Weijer, Wilbert ; Gray, Alison R.
    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.
  • Article
    Spiraling pathways of global deep waters to the surface of the Southern Ocean
    (Nature Publishing Group, 2017-08-02) Tamsitt, Veronica ; Drake, Henri F. ; Morrison, Adele K. ; Talley, Lynne D. ; Dufour, Carolina O. ; Gray, Alison R. ; Griffies, Stephen M. ; Mazloff, Matthew R. ; Sarmiento, Jorge L. ; Wang, Jinbo ; Weijer, Wilbert
    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60–90 years.