Moxley
Jerry
Moxley
Jerry
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleGoogle haul out : Earth observation imagery and digital aerial surveys in coastal wildlife management and abundance estimation(Oxford University Press, 2017-06-14) Moxley, Jerry ; Bogomolni, Andrea L. ; Hammill, Mike O. ; Moore, Kathleen M. T. ; Polito, Michael J. ; Sette, Lisa ; Sharp, W. Brian ; Waring, Gordon T. ; Gilbert, James R. ; Halpin, Patrick N. ; Johnston, David W.As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
-
ArticlePrevalence of influenza A virus in live-captured North Atlantic gray seals : a possible wild reservoir(Nature Publishing Group, 2016-08-03) Puryear, Wendy Blay ; Keogh, Mandy ; Hill, Nichola ; Moxley, Jerry ; Josephson, Elizabeth ; Davis, Kimberly Ryan ; Bandoro, Christopher ; Lidgard, Damian ; Bogomolni, Andrea L. ; Levin, Milton ; Lang, Shelley ; Hammill, Michael ; Bowen, Don ; Johnston, David W. ; Romano, Tracy ; Waring, Gordon T. ; Runstadler, JonathanInfluenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%–12.5%) in weaned pups and 5.3% (CI: 1.2%–14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%–24.5%) and 50% (CI: 33.7%–66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are both permissive to and tolerant of diverse IAV, possibly representing an endemically infected wild reservoir population.
-
ArticleThe role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management(Wiley, 2020-03-20) Staudinger, Michelle D. ; Goyert, Holly ; Suca, Justin J. ; Coleman, Kaycee ; Welch, Linda ; Llopiz, Joel K. ; Wiley, David N. ; Altman, Irit ; Applegate, Andew ; Auster, Peter J. ; Baumann, Hannes ; Beaty, Julia ; Boelke, Deirdre ; Kaufman, Les ; Loring, Pam ; Moxley, Jerry ; Paton, Suzanne ; Powers, Kevin D. ; Richardson, David E. ; Robbins, Jooke ; Runge, Jeffrey A. ; Smith, Brian ; Spiegel, Caleb ; Steinmetz, HalleyThe American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.