Thirumalai Kaustubh

No Thumbnail Available
Last Name
Thirumalai
First Name
Kaustubh
ORCID
0000-0002-7875-4182

Search Results

Now showing 1 - 2 of 2
  • Article
    Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions
    (American Association for the Advancement of Science, 2021-06-04) Clemens, Steven C. ; Yamamoto, Masanobu ; Thirumalai, Kaustubh ; Giosan, Liviu ; Richey, Julie N. ; Nilsson-Kerr, Katrina ; Rosenthal, Yair ; Anand, Pallavi ; McGrath, Sarah M.
    South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.
  • Article
    Neoglacial climate anomalies and the Harappan metamorphosis
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-11-13) Giosan, Liviu ; Orsi, William D. ; Coolen, Marco J. L. ; Wuchter, Cornelia ; Dunlea, Ann G. ; Thirumalai, Kaustubh ; Munoz, Samuel E. ; Clift, Peter D. ; Donnelly, Jeffrey P. ; Galy, Valier ; Fuller, Dorian Q.
    Climate exerted constraints on the growth and decline of past human societies but our knowledge of temporal and spatial climatic patterns is often too restricted to address causal connections. At a global scale, the inter-hemispheric thermal balance provides an emergent framework for understanding regional Holocene climate variability. As the thermal balance adjusted to gradual changes in the seasonality of insolation, the Intertropical Convergence Zone migrated southward accompanied by a weakening of the Indian summer monsoon. Superimposed on this trend, anomalies such as the Little Ice Age point to asymmetric changes in the extratropics of either hemisphere. Here we present a reconstruction of the Indian winter monsoon in the Arabian Sea for the last 6000 years based on paleobiological records in sediments from the continental margin of Pakistan at two levels of ecological complexity: sedimentary ancient DNA reflecting water column environmental states and planktonic foraminifers sensitive to winter conditions. We show that strong winter monsoons between ca. 4500 and 3000 years ago occurred during a period characterized by a series of weak interhemispheric temperature contrast intervals, which we identify as the early neoglacial anomalies (ENA). The strong winter monsoons during ENA were accompanied by changes in wind and precipitation patterns that are particularly evident across the eastern Northern Hemisphere and tropics. This coordinated climate reorganization may have helped trigger the metamorphosis of the urban Harappan civilization into a rural society through a push–pull migration from summer flood-deficient river valleys to the Himalayan piedmont plains with augmented winter rains. The decline in the winter monsoon between 3300 and 3000 years ago at the end of ENA could have played a role in the demise of the rural late Harappans during that time as the first Iron Age culture established itself on the Ghaggar-Hakra interfluve. Finally, we speculate that time-transgressive land cover changes due to aridification of the tropics may have led to a generalized instability of the global climate during ENA at the transition from the warmer Holocene thermal maximum to the cooler Neoglacial.