Lefebvre
Kathi A.
Lefebvre
Kathi A.
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleParalytic shellfish toxins in Alaskan Arctic food webs during the anomalously warm ocean conditions of 2019 and estimated toxin doses to Pacific walruses and bowhead whales(Elsevier, 2022-03-03) Lefebvre, Kathi A. ; Fachon, Evangeline ; Bowers, Emily K. ; Kimmel, David G. ; Snyder, Jonathan A. ; Stimmelmayr, Raphaela ; Grebmeier, Jacqueline M. ; Kibler, Steve ; Hardison, D. Ransom ; Anderson, Donald M. ; Kulis, David M. ; Murphy, James M. ; Gann, Jeanette C. ; Cooper, Daniel W. ; Eisner, Lisa B. ; Duffy-Anderson, Janet T. ; Sheffield, Gay ; Pickart, Robert S. ; Mounsey, Anna ; Willis, Maryjean L. ; Stabeno, Phyllis J. ; Siddon, ElizabethClimate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 μg STX eq. 100 g−1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 μg STX eq. 100 g−1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiaġvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 μg STX eq. 100 g−1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 μg STX eq. kg body weight−1 day−1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.
-
ArticleMarine harmful algal blooms (HABs) in the united states: history, current status and future trends(Elsevier, 2021-03-03) Anderson, Donald M. ; Fensin, Elizabeth ; Gobler, Christopher J. ; Hoeglund, Alicia E. ; Hubbard, Katherine A. ; Kulis, David M. ; Landsberg, Jan H. ; Lefebvre, Kathi A. ; Provoost, Pieter ; Richlen, Mindy L. ; Smith, Juliette L. ; Solow, Andrew R. ; Trainer, Vera L.Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15 U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50 U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
-
ArticleHarmful algal blooms in the Alaskan Arctic: an emerging threat as the ocean warms(Oceanography Society, 2022-04-18) Anderson, Donald M. ; Fachon, Evangeline ; Hubbard, Katherine A. ; Lefebvre, Kathi A. ; Lin, Peigen ; Pickart, Robert S. ; Richlen, Mindy L. ; Sheffield, Gay ; Van Hemert, CarolineHarmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands.
-
ArticleCenters for Oceans and Human Health : a unified approach to the challenge of harmful algal blooms(BioMed Central, 2008-11-07) Erdner, Deana L. ; Dyble, Julianne ; Parsons, Michael L. ; Stevens, Richard C. ; Hubbard, Katherine A. ; Wrabel, Michele L. ; Moore, Stephanie K. ; Lefebvre, Kathi A. ; Anderson, Donald M. ; Bienfang, Paul ; Bidigare, Robert R. ; Parker, Micaela S. ; Moeller, Peter D. R. ; Brand, Larry E. ; Trainer, Vera L.Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute toxicity, but almost nothing is known about the effects of chronic, subacute toxin exposure. The OHH initiatives have brought scientists together to work collectively on HAB issues, within and across regions. The successes that have been achieved highlight the value of collaboration and cooperation across disciplines, if we are to continue to advance our understanding of HABs and their relationship to human health.
-
ArticleEvidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic(National Academy of Sciences, 2021-10-04) Anderson, Donald M. ; Fachon, Evangeline ; Pickart, Robert S. ; Lin, Peigen ; Fischer, Alexis D. ; Richlen, Mindy L. ; Uva, Victoria ; Brosnahan, Michael L. ; McRaven, Leah T. ; Bahr, Frank B. ; Lefebvre, Kathi A. ; Grebmeier, Jacqueline M. ; Danielson, Seth L. ; Lyu, Yihua ; Fukai, YuriAmong the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
-
Working PaperHarmful Algal Research & Response: A National Environmental Science Strategy (HARRNESS), 2024-2034(Woods Hole Oceanographic Institution, 2024-08-01) Anderson, Donald M. ; Backer, Lorraine C. ; Bouma-Gregson, Keith ; Bowers, Holly A. ; Bricelj, V. Monica ; D’Anglada, Lesley ; Deeds, Jonathan ; Dortch, Quay ; Doucette, Gregory J. ; Graham, Jennifer ; Howard, Meredith ; Kirkpatrick, Barbara ; Kudela, Raphael M. ; Lefebvre, Kathi A. ; Moore, Stephanie K. ; Parsons, Michael L. ; Pokrzywinski, Kaytee ; Ramsdell, John S. ; Raymond, Heather ; Richlen, Mindy L. ; Roberts, Virginia A. ; Smith, Jayme ; Smith, Juliette L. ; Stauffer, Beth ; Suddleson, Marc ; Tester, Patricia A. ; Whitehead, ChristopherHarmful and toxic algal blooms (HABs) are a well-established and severe threat to human health, economies, and marine and freshwater ecosystems on all coasts of the United States and its inland waters. HABs can comprise microalgae, cyanobacteria, and macroalgae (seaweeds). Their impacts, intensity, and geographic range have increased over past decades due to both human-induced and natural changes. In this report, HABs refers to both marine algal and freshwater cyanobacterial events. This Harmful Algal Research and Response: A National Environmental Science Strategy (HARRNESS) 2024-2034 plan builds on major accomplishments from past efforts, provides a state of the science update since the previous decadal HARRNESS plan (2005-2015), identifies key information gaps, and presents forward-thinking solutions. Major achievements on many fronts since the last HARRNESS are detailed in this report. They include improved understanding of bloom dynamics of large-scale regional HABs such as those of Pseudo-nitzschia on the west coast, Alexandrium on the east coast, Karenia brevis on the west Florida shelf, and Microcystis in Lake Erie, and advances in HAB sensor technology, allowing deployment on fixed and mobile platforms for long-term, continuous, remote HAB cell and toxin observations. New HABs and impacts have emerged. Freshwater HABs now occur in many inland waterways and their public health impacts through drinking and recreational water contamination have been characterized and new monitoring efforts have been initiated. Freshwater HAB toxins are finding their way into marine environments and contaminating seafood with unknown consequences. Blooms of Dinophysis spp., which can cause diarrhetic shellfish poisoning, have appeared around the US coast, but the causes are not understood. Similarly, blooms of fish- and shellfish-killing HABs are occurring in many regions and are especially threatening to aquaculture. The science, management, and decision-making necessary to manage the threat of HABs continue to involve a multidisciplinary group of scientists, managers, and agencies at various levels. The initial HARRNESS framework and the resulting National HAB Committee (NHC) have proven effective means to coordinate the academic, management, and stakeholder communities interested in national HAB issues and provide these entities with a collective voice, in part through this updated HARRNESS report. Congress and the Executive Branch have supported most of the advances achieved under HARRNESS (2005-2015) and continue to make HABs a priority. Congress has reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act (HABHRCA) multiple times and continues to authorize the National Oceanic and Atmospheric Administration (NOAA) to fund and conduct HAB research and response, has given new roles to the US Environmental Protection Agency (EPA), and required an Interagency Working Group on HABHRCA (IWG HABHRCA). These efforts have been instrumental in coordinating HAB responses by federal and state agencies. Initial appropriations for NOAA HAB research and response decreased after 2005, but have increased substantially in the last few years, leading to many advances in HAB management in marine coastal and Great Lakes regions. With no specific funding for HABs, the US EPA has provided funding to states through existing laws, such as the Clean Water Act, Safe Drinking Water Act, and to members of the Great Lakes Interagency Task Force through the Great Lakes Restoration Initiative, to assist states and tribes in addressing issues related to HAB toxins and hypoxia. The US EPA has also worked towards fulfilling its mandate by providing tools and resources to states, territories, and local governments to help manage HABs and cyanotoxins, to effectively communicate the risks of cyanotoxins and to assist public water systems and water managers to manage HABs. These tools and resources include documents to assist with adopting recommended recreational criteria and/or swimming advisories, recommendations for public water systems to choose to apply health advisories for cyanotoxins, risk communication templates, videos and toolkits, monitoring guidance, and drinking water treatment optimization documents. Beginning in 2018, Congress has directed the U.S. Army Corps of Engineers (USACE) to develop a HAB research initiative to deliver scalable HAB prevention, detection, and management technologies intended to reduce the frequency and severity of HAB impacts to our Nation’s freshwater resources. Since the initial HARRNESS report, other federal agencies have become increasingly engaged in addressing HABs, a trend likely to continue given the evolution of regulations(e.g., US EPA drinking water health advisories and recreational water quality criteria for two cyanotoxins), and new understanding of risks associated with freshwater HABs. The NSF/NIEHS Oceans and Human Health Program has contributed substantially to our understanding of HABs. The US Geological Survey, Centers for Disease Control and Prevention, and the National Aeronautics Space Administration also contribute to HAB-related activities. In the preparation of this report, input was sought early on from a wide range of stakeholders, including participants from academia, industry, and government. The aim of this interdisciplinary effort is to provide summary information that will guide future research and management of HABs and inform policy development at the agency and congressional levels. As a result of this information gathering effort, four major HAB focus/programmatic areas were identified: 1) Observing systems, modeling, and forecasting; 2) Detection and ecological impacts, including genetics and bloom ecology; 3) HAB management including prevention, control, and mitigation, and 4) Human dimensions, including public health, socio-economics, outreach, and education. Focus groups were tasked with addressing a) our current understanding based on advances since HARRNESS 2005-2015, b) identification of critical information gaps and opportunities, and c) proposed recommendations for the future. The vision statement for HARRNESS 2024-2034 has been updated, as follows: “Over the next decade, in the context of global climate change projections, HARRNESS will define the magnitude, scope, and diversity of the HAB problem in US marine, brackish and freshwaters; strengthen coordination among agencies, stakeholders, and partners; advance the development of effective research and management solutions; and build resilience to address the broad range of US HAB problems impacting vulnerable communities and ecosystems.” This will guide federal, state, local and tribal agencies and nations, researchers, industry, and other organizations over the next decade to collectively work to address HAB problems in the United States.
-
ArticleTracking a large-scale and highly toxic Arctic algal bloom: Rapid detection and risk communication(Association for the Sciences of Limnology and Oceanography (ASLO), 2024-07-10) Fachon, Evangeline ; Pickart, Robert S. ; Sheffield, Gay ; Pate, Emma ; Pathare, Mrunmayee ; Brosnahan, Michael L. ; Muhlbach, Eric ; Horn, Kali ; Spada, Nathaniel N. ; Rajagopalan, Anushka ; Lin, Peigen ; McRaven, Leah T. ; Lago, Loreley S. ; Huang, Jie ; Bahr, Frank B. ; Stockwell, Dean A. ; Hubbard, Katherine A. ; Farrugia, Thomas J. ; Lefebvre, Kathi A. ; Anderson, Donald M.In recent years, blooms of the neurotoxic dinoflagellate Alexandrium catenella have been documented in Pacific Arctic waters, and the paralytic shellfish toxins (PSTs) that this species produces have been detected throughout the food web. These observations have raised significant concerns about the role that harmful algal blooms (HABs) will play in a rapidly changing Arctic. During a research cruise in summer 2022, a massive bloom of A. catenella was detected in real time as it was advected through the Bering Strait region. The bloom was exceptional in both spatial scale and density, extending > 600 km latitudinally, reaching concentrations > 174,000 cells L−1, and producing high-potency PST congeners. Throughout the event, coastal stakeholders in the region were engaged and a multi-faceted community response was mobilized. This unprecedented bloom highlighted the urgent need for response capabilities to ensure safe utilization of critical marine resources in a region that has little experience with HABs.