Tivey
Margaret K.
Tivey
Margaret K.
No Thumbnail Available
Search Results
Now showing
1 - 15 of 15
-
PreprintRare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea : indicators of sub-seafloor hydrothermal processes in back-arc basins( 2010-05-02) Craddock, Paul R. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Rouxel, Olivier J. ; Reeves, Eoghan P. ; Tivey, Margaret K.Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back–arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite–normalized (REEN) distribution patterns (LaN/SmN ~ 0.6 – 11; LaN/YbN ~ 0.6 – 71; EuN/Eu*N ~ 1 – 55). REEN distribution patterns in different vent fluids range from light–REE enriched, to mid– and heavy–REE enriched, to flat, and have a range of positive Eu–anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid–ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near seafloor mixing between high–temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.
-
ArticleLinks from mantle to microbe at the Lau Integrated Study Site : insights from a back-arc spreading center(The Oceanography Society, 2012-03) Tivey, Margaret K. ; Becker, Erin ; Beinart, Roxanne A. ; Fisher, Charles R. ; Girguis, Peter R. ; Langmuir, Charles H. ; Michael, Peter J. ; Reysenbach, Anna-LouiseThe Lau Integrated Study Site (ISS) has provided unique opportunities for study of ridge processes because of its back-arc setting in the southwestern Pacific. Its location allows study of a biogeographical province distinct from those of eastern Pacific and mid-Atlantic ridges, and crustal compositions along the ridge lie outside the range of mid-ocean ridge crustal compositions. The Lau ISS is located above a subduction zone, at an oblique angle. The underlying mantle receives water and other elements derived from the downgoing lithospheric slab, with an increase in slab influence from north to south. Water lowers the mantle melting temperature and leads to greater melt production where the water flux is greater, and to distinctive regional-scale gradients along the ridge. There are deeper faulted axial valleys with basaltic volcanism in the north and inflated axial highs with andesites in the south. Differences in igneous rock composition and release of magmatic volatiles affect compositions of vent fluids and deposits. Differences in vent fluid compositions and small-scale diffuse-flow regimes correlate with regional-scale patterns in microbial and megafaunal distributions. The interdisciplinary research effort at the Lau ISS has successfully identified linkages between subsurface processes and deep-sea biological communities, from mantle to microbe to megafauna.
-
PreprintA ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents( 2006-05-19) Reysenbach, Anna-Louise ; Liu, Yitai ; Banta, Amy B. ; Beveridge, Terry J. ; Kirshtein, Julie D. ; Schouten, Stefan ; Tivey, Margaret K. ; Von Damm, Karen L. ; Voytek, Mary A.Deep-sea hydrothermal vents play an important role in global biogeochemical cycles, providing biological oases at the seafloor that are supported by the thermal and chemical flux from the Earth’s interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated seawater, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively-venting sulphide structures is generally low (pH<4.5)2 yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on rRNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE23-6. Despite DHVE2’s ubiquity and apparent deep-sea endemism, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur or iron reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 to 75°C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing the first evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents.
-
ArticleSulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge(John Wiley & Sons, 2013-07-08) Jamieson, John W. ; Hannington, Mark D. ; Clague, David A. ; Kelley, Deborah S. ; Delaney, John R. ; Holden, James F. ; Tivey, Margaret K. ; Kimpe, Linda E.Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ∼200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ∼1200 and ∼2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ∼1700 to ∼2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ∼5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years.
-
ArticleAnisotropy in seafloor flange, slab, and crust samples from measurements of permeability and porosity : implications for fluid flow and deposit evolution(American Geophysical Union, 2012-03-21) Gribbin, Jill L. ; Zhu, Wenlu ; Tivey, Margaret K.Seafloor hydrothermal vents accommodate the convective transfer of fluids from subsurface environments to the oceans. In addition to black smoker chimneys, a variety of other deposit-types form. Flanges protrude from the sides of edifices as horizontal ledges, below which vent fluids pool. Slabs are hydrothermally silicified layered volcaniclastic deposits. Crusts are deposits composed of previously deposited material underlain by hot fluids. Permeability and porosity measurements were conducted on flanges from Guaymas Basin and the Main Endeavour Vent Field, slabs from the Lucky Strike Vent Field, and a crust sample from the Trans-Atlantic Geotraverse (TAG) active mound. Cores taken parallel to textural layers have high permeabilities (≈10−12 m2) and porosities (30–40%) that follow a power law relationship with exponent α ≈ 1 to 2. Cores taken perpendicular to layering have permeabilities from 10−16 to 10−12 m2 and porosities from 20 to 45%, with α ≈ 5 to 8. The two distinct trends result from the heterogeneity of textural layers within these deposits. Microstructural observations show large variations in grain packing and pore distributions between layers, consistent with flow perpendicular to layering being more susceptible to changes in permeability that result from mineral precipitation than flow parallel to layering. These results imply that the primary flow direction in these deposits is parallel to layering, whereas flow perpendicular to layering is more restricted. Quantification of anisotropic permeability provides important constraints for determination of fluid flux from these layered deposits, and temperatures, chemistry, and availability of nutrients to organisms living in and at exteriors of deposits.
-
ArticleVariable morphologic expression of volcanic, tectonic, and hydrothermal processes at six hydrothermal vent fields in the Lau back-arc basin(American Geophysical Union, 2008-07-26) Ferrini, Vicki L. ; Tivey, Margaret K. ; Carbotte, Suzanne M. ; Martinez, Fernando ; Roman, Christopher N.Ultrahigh-resolution bathymetric maps (25 cm grid) are used to quantify the physical dimensions of and spatial relationships between tectonic, volcanic, and hydrothermal features at six hydrothermal vent fields in the Lau back-arc basin. Supplemented with near-bottom photos, and nested within regional DSL-120A side-scan sonar data, these maps provide insight into the nature of hydrothermal systems along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR). Along-axis transitions evident in localized volcanic morphology and tectonic characteristics include a change from broad low-relief volcanic domes (hundreds of meters wide, <10 m tall) that are dominated by pillow and lobate lava morphologies and are cut by faults and fissures to higher aspect ratio volcanic domes (tens of meters wide, tens of meters tall) dominated by aa-type lava morphologies, with finger-like flows, and few tectonic structures. These along-axis differences in localized seafloor morphology suggest differences in hydrothermal circulation pathways within the shallow crust and correlate with regional transitions in a variety of ridge properties, including the large-scale morphology of the ridge axis (shallow axial valley to axial high), seafloor lava compositions, and seismic properties of the upper crust. Differences in morphologic characteristics of individual flows and lava types were also quantified, providing an important first step toward the remote characterization of complex terrains associated with hydrothermal vent fields.
-
Working PaperManus 2006 : hydrothermal systems in the Eastern Manus Basin: fluid chemistry and magnetic structure as guides to subseafloor processes(Woods Hole Oceanographic Institution, 2006) Tivey, Maurice A. ; Bach, Wolfgang ; Seewald, Jeffrey S. ; Tivey, Margaret K. ; Vanko, David A.The hydrothermal systems in the Manus Basin of Papua New Guinea (PNG) were comprehensively investigated through a combination of sampling and mapping using the Remotely-Operated Vehicle (ROV) Jason, the autonomous underwater vehicle (AUV) ABE (Autonomous Benthic Explorer) and ship-based CTD work and multi-beam bathymetric mapping using the RV Melville. The objectives of the cruise (July 21st to Sept. 1st, 2006) were to identify the tectonic/geologic settings of the vent systems, examine the interactions of seawater with felsic rocks that constitute the high silica end-member range of seafloor basement compositions, determine the extent of volatile magmatic inputs into these systems and to examine the evolution of hydrothermal activity through time. The first 10-day portion of the cruise was funded by Nautilus Minerals in a collaborative research effort to examine the Manus Spreading Center and the Vienna Woods basalt-hosted hydrothermal vent systems. The second 32-day portion of the cruise, funded by the National Science Foundation (NSF), focused on the felsic-hosted hydrothermal systems of the PACMANUS (Papua New Guinea – Australia – Canada Manus) vents drilled by the Ocean Drilling Program (ODP) in 2000 and the nearby seafloor volcano vent systems of Desmos and SuSu Knolls. Nautilus Minerals generously funded the add-on use of ABE throughout the NSF program allowing for high resolution mapping to be completed on all the major vent sites within the eastern Manus Basin. A total of 30 ROV dives (497 operational hours) were completed collecting 198 vent sulfides, 83 altered substrate and 43 fresh lava samples along with 104 black, gray and clear fluid samples using gastight and major samplers. ABE successfully completed 14 high resolution bathymetric, CTD and magnetic field mapping dives covering a total of 364 line km of seafloor. We located and mapped in detail the Vienna Woods and nearby Tufar-2 and -3 vent areas on Manus Spreading Center documenting the strong tectonic control on the distribution of the vent systems and the presence of reduced magnetization i.e. “magnetic burnholes”, that help define the lateral extent of the vent fields. The Vienna Woods vent systems (273°-285°C) form treetrunk- like chimneys 5-15 m tall, that emit black to gray fluids with pH and compositions similar to other documented midocean ridge (MOR) systems like the East Pacific Rise. At PACMANUS, high-resolution mapping by ABE reveals a distinctive seafloor morphology associated with dacitic lava flows along with discrete magnetic burnholes associated with the active venting systems of Roman Ruins, Satanic Mills, Snowcap, Tsukushi and a new vigorous vent system discovered southeast of the Satanic Mills area named Fenway. Another vent field in its waning stages was also discovered ~8 km northeast of PACMANUS on the Northeast Pual Ridge. At PACMANUS, the 40 m diameter Fenway mound hosts outcrops of massive anhydrite on the seafloor beneath the sulfide chimneys, a rare occurrence as anhydrite is unstable at ambient seafloor conditions. Fenway is also boiling (356°C, 172 bar) with two-phase fluid producing a ”flashing” phenomenon when the Jason lights illuminated the vent orifices. The five PACMANUS vents (271° – 356°C) have ubiquitous low pH (2.3 to 2.8) relative to Vienna Woods and typical MOR fluids, presumably reflecting water-rock reaction with the felsic hosted lava, input of magmatic volatiles and the subsurface deposition of metal sulfides. We investigated two strongly magmatically influenced vent systems associated with seafloor volcanoes. Desmos is a breached caldera with white smokers (70°-115°C) that are highly acidic (pH 1 – 1.5) and sulfur lava flows. SuSu Knolls and the adjacent Suzette mound (Solwara-1 of Nautilus Minerals) were mapped in detail and sampled intensively. Hydrothermal activity at SuSu Knolls showed a remarkable range from boiling black smokers to white sulfur-rich fluids, native sulfur flows and massive anhydrite outcrops. Vent fluids from North Su (48° – 325°C) are 2 characterized by a measured pH of 0.87, more than an order of magnitude more acidic than any deep-sea vent fluid sampled to date. Many of the low pH fluids sampled at North Su and Desmos were actively precipitating native sulfur creating thick plumes of dense white smoke. In general, sampled fluids show a considerable range in pH and gas contents, sometimes within individual hydrothermal fields. The pronounced variability of fluid chemistry within 10’s to 100’s of m at North Su is probably unparalleled in systems studied to date. The most plausible explanation for the observed variability is that different fluid-rock reaction pathways are expressed in regimes of variable magmatic volatile input and extent of subsurface cooling. This hypothesis is supported by the distribution of alteration types at the seafloor, where the occurrence of advanced argillic alteration - that relates to interactions with acid-sulfate waters such as sampled at Desmos and North Su – is patchy and spatially confined to patches of active (Desmos, North Su) and past (Snowcap) venting of such fluids. In relationship to the ODP drilling results at PACMANUS we identified and sampled examples of advanced argillic rock alteration similar to that seen in the drill core. Good examples came from Snowcap and from the North Su pillar. We sampled highly clay-altered basement from just underneath extinct chimney complexes at two locations in the Satanic Mills hydrothermal field. Both samples have dense networks of sulfide veins and may represent the stockwork or feeder zone through which hydrothermal fluids rise up to the seafloor. These samples, in addition to the other altered rock types recovered, will provide useful stepping stones in bridging the knowledge gap between the extensive surface sampling now accomplished and the basement rocks recovered by ODP, where coring was almost nil shallower than 40 m subseafloor depth. Overall, the quality and quantity of solid and fluid samples that can be put in a direct geochemical context is remarkably high. This unique dataset encompasses a broad range of geological environments that includes hydrothermal activity in basalt-hosted oceanic style spreading centers to hydrothermal systems associated with arc-style volcanism. For the first time, alteration assemblages that are commonly observed in drillcore and outcrop on land have been observed in the aqueous environment responsible for their formation.
-
PreprintPrecipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge( 2015-10) Jamieson, John W. ; Hannington, Mark D. ; Tivey, Margaret K. ; Hansteen, Thor ; Williamson, Nicole M.-B. ; Stewart, Margaret ; Fietzke, Jan ; Butterfield, David A. ; Frische, Matthias ; Allen, Leigh ; Cousens, Brian ; Langer, JuliaHydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ~0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ~120 and 240°C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60 – 120°C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
-
PreprintThe Trans-Atlantic Geotraverse hydrothermal field : a hydrothermal system on an active detachment fault( 2015-02) Humphris, Susan E. ; Tivey, Margaret K. ; Tivey, Maurice A.Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08’N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high permeability zones) influence the pattern of hydrothermal circulation, mineral deposition, and fluid chemistry, both in space and time, within slowly accreted ocean crust?
-
ArticleThe Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats : complex seafloor expressions of subsurface hydrothermal circulation(Frontiers Media, 2016-02-18) Teske, Andreas ; de Beer, Dirk ; McKay, Luke J. ; Tivey, Margaret K. ; Biddle, Jennifer F. ; Hoer, Daniel ; Lloyd, Karen G. ; Lever, Mark A. ; Røy, Hans ; Albert, Daniel B. ; Mendlovitz, Howard P. ; MacGregor, Barbara J.The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.
-
PreprintChemistry of hot springs along the Eastern Lau Spreading Center( 2010-12-08) Mottl, Michael J. ; Seewald, Jeffrey S. ; Wheat, C. Geoffrey ; Tivey, Margaret K. ; Michael, Peter J. ; Proskurowski, Giora ; McCollom, Thomas M. ; Reeves, Eoghan P. ; Sharkey, Jessica ; You, Chen-Feng ; Chan, Lui-Heung ; Pichler, ThomasThe Eastern Lau Spreading Center (ELSC) is the southernmost part of the back-arc spreading axis in the Lau Basin, west of the Tonga trench and the active Tofua volcanic arc. Over its 397-km length it exhibits large and systematic changes in spreading rate, magmatic/tectonic processes, and proximity to the volcanic arc. In 2005 we collected 81 samples of vent water from six hydrothermal fields along the ELSC. The chemistry of these waters varies both within and between vent fields, in response to changes in substrate composition, temperature and pressure, pH, water/rock ratio, and input from magmatic gases and subducted sediment. Hot-spring temperatures range from 229º to 363ºC at the five northernmost fields, with a general decrease to the south that is reversed at the Mariner field. The southernmost field, Vai Lili, emitted water at up to 334°C in 1989 but had a maximum venting temperature of only 121ºC in 2005, due to waning activity and admixture of bottom seawater into the subseafloor plumbing system. Chloride varies both within fields and from one field to another, from a low of 528 mmol/kg to a high of 656 mmol/kg, and may be enriched by phase separation and/or leaching of Cl from the rock. Concentrations of the soluble elements K, Rb, Cs, and B likewise increase southward as the volcanic substrate becomes more silica-rich, especially on the Valu Fa Ridge. Iodine and δ7Li increase southward, and δ11B decreases as B increases, apparently in response to increased input from subducted sediment as the arc is approached. Species that decrease southward as temperature falls are Si, H2S, Li, Na/Cl, Fe, Mn, and 87Sr/86Sr, whereas pH, alkalinity, Ca, and Sr increase. Oxygen isotopes indicate a higher water/rock ratio in the three systems on Valu Fa Ridge, consistent with higher porosity in more felsic volcanic rocks. Vent waters at the Mariner vent field on the Valu Fa Ridge are significantly hotter, more acid and metal-rich, less saline, and richer in dissolved gases and other volatiles, including H2S, CO2, and F, than the other vent fields, consistent with input of magmatic gases. The large variations in geologic and geophysical parameters produced by back-arc spreading along the ELSC, which exceed those along mid-ocean ridge spreading axes, produce similar large variations in the composition of vent waters, and thus provide new insights into the processes that control the chemistry of submarine hot springs.
-
ArticleBuilding a window to the sea : Ocean Research Interactive Observatory Networks (ORION)(Oceanography Society, 2004-06) Schofield, Oscar M. E. ; Tivey, Margaret K.For centuries, oceanographers have relied on data and observations about the ocean and the seafloor below gathered from ships during cruises of limited duration. This expeditionary research approach has resulted in major advances in understanding global ocean circulation, the energy associated with mesoscale circulation, plate tectonics, global ocean productivity, and climate-ocean coupling. These and many other successes have expanded our view of Earth and ocean processes, and have demonstrated a need for sampling strategies spanning temporal and spatial scales not effectively carried out using ships. To address this observational gap, community efforts in the United States consistently have recommended that funding agencies support development of the capability to maintain a continuous sampling and monitoring presence in the ocean.
-
ArticlePermeability-porosity relationships in seafloor vent deposits : dependence on pore evolution processes(American Geophysical Union, 2007-05-12) Zhu, Wenlu ; Tivey, Margaret K. ; Gittings, Hilary ; Craddock, Paul R.Systematic laboratory measurements of permeability and porosity were conducted on three large vent structures from the Mothra Hydrothermal vent field on the Endeavor segment of the Juan de Fuca Ridge. Geometric means of permeability values obtained from a probe permeameter are 5.9 × 10−15 m2 for Phang, a tall sulfide-dominated spire that was not actively venting when sampled; 1.4 × 10−14 m2 for Roane, a lower-temperature spire with dense macrofaunal communities growing on its sides that was venting diffuse fluid of <300°C; and 1.6 × 10−14 m2 for Finn, an active black smoker with a well-defined inner conduit that was venting 302°C fluids prior to recovery. Twenty-three cylindrical cores were then taken from these vent structures. Permeability and porosity of the drill cores were determined on the basis of Darcy's law and Boyle's law, respectively. Permeability values range from ∼10−15 to 10−13 m2 for core samples from Phang, from ∼10−15 to 10−12 m2 for cores from Roane, and from ∼10−15 to 3 × 10−13 m2 for cores from Finn, in good agreement with the probe permeability measurements. Permeability and porosity relationships are best described by two different power law relationships with exponents of ∼9 (group I) and ∼3 (group II). Microstructural analyses reveal that the difference in the two permeability-porosity relationships reflects different mineral precipitation processes as pore space evolves within different parts of the vent structures, either with angular sulfide grains depositing as aggregates that block fluid paths very efficiently (group I), or by late stage amorphous silica that coats existing grains and reduces fluid paths more gradually (group II). The results suggest that quantification of permeability and porosity relationships leads to a better understanding of pore evolution processes. Correctly identifying permeability and porosity relationships is an important first step toward accurately estimating fluid distribution, flow rate, and environmental conditions within seafloor vent deposits, which has important consequences for chimney growth and biological communities that reside within and on vent structures.
-
PreprintA dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents( 2009-06-12) Sarrazin, Jozée ; Rodier, P. ; Tivey, Margaret K. ; Singh, Hanumant ; Schultz, A. ; Sarradin, Pierre-MarieNumerous attempts have been made over the last thirty years to estimate fluid flow rates at hydrothermal vents, either at the exit of black smoker chimneys or within diffuse flow areas. In this study, we combine two methods to accurately estimate fluid flow velocities at diffuse flow areas. While the first method uses a hot film anemometer that performs high frequency measurements, the second allows a relatively rapid assessment of fluid flow velocity through video imagery and provides in situ data to calibrate the sensor. Measurements of flow velocities on hydrothermal diffuse flow areas were obtained on the Mid-Atlantic Ridge (MAR). They range from 1.1 to 4.9 mm/sec., at the substratum level, in low temperature (4.5 to 16.4°C) diffuse flow areas from the Tour Eiffel sulfide edifice. A strong correlation was observed between fluid flow velocities and temperature, supporting the possible use of temperature as a proxy to estimate flow rates in diffuse flow areas where such a simple linear flow/temperature relation is shown to dominate.
-
ArticleGeneration of seafloor hydrothermal vent fluids and associated mineral deposits(Oceanography Society, 2007-03) Tivey, Margaret K.In the nearly 30 years since the discovery of hydrothermal venting along open-ocean spreading centers, much has been learned about the generation of vent fluids and associated deposits. The hot, reducing, metal-rich, magnesium- and sulfatepoor hydrothermal fluids that exit “black smoker” and “white smoker” chimneys are formed through interactions of seawater with oceanic crust. These interactions (1) modify the composition of oceanic crust, (2) affect ocean chemistry, (3) form metal-rich deposits (possible analogs to ore deposits present on land), and (4) provide energy sources for biological communities in the deep sea.