Stafford Kathleen M.

No Thumbnail Available
Last Name
First Name
Kathleen M.

Search Results

Now showing 1 - 15 of 15
  • Article
    Seasonal occurrence of fin whale song off Juan Fernandez, Chile
    (Inter Research, 2019-06-27) Buchan, Susannah J. ; Gutierrez, Laura ; Balcazar-Cabrera, Naysa ; Stafford, Kathleen M.
    Fin whales Balaenoptera physalus were the species of baleen whale most widely caught by commercial whaling fleets off the Chilean coast and are globally classified as Endangered. However, very little is known about the present distribution and seasonal movements of fin whales off the coast of Chile. Passive acoustic data collected at the HA03 station of the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization off the Juan Fernandez Archipelago (JFA) between 2007 and 2016 were analyzed. The temporal occurrence of fin whale song was examined using automatic detection via spectrogram cross-correlation of song notes and by calculating the average acoustic power in the frequency bands of fin whale song. Fin whale song off JFA was composed of regular 17 Hz notes associated with high-frequency components at 85 Hz, with singlet phrasing at a dominant primary inter-note interval of 14.4 s and a secondary interval of 30.8 s. There was a clear seasonal pattern in acoustic presence that was consistent across all years: low or no song during the austral summer and a peak in song occurrence in austral winter. A propagation loss model estimated the detection range at this site to be 186 km. Where the fin whales that are heard off JFA spend the summer months remains an open question. Possible locations include the Western Antarctic Peninsula and/or off northern-central mainland Chile. Further studies should be pursued to better understand the distribution and seasonal movements and to support the conservation of this Endangered species.
  • Article
    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014
    (Nature Publishing Group, 2017-10-18) Davis, Genevieve E. ; Baumgartner, Mark F. ; Bonnell, Julianne M. ; Bell, Joel ; Berchok, Catherine L. ; Bort Thornton, Jacqueline ; Brault, Solange ; Buchanan, Gary ; Charif, Russell A. ; Cholewiak, Danielle ; Clark, Christopher W. ; Corkeron, Peter ; Delarue, Julien ; Dudzinski, Kathleen ; Hatch, Leila ; Hildebrand, John ; Hodge, Lynne ; Klinck, Holger ; Kraus, Scott D. ; Martin, Bruce ; Mellinger, David K. ; Moors-Murphy, Hilary ; Nieukirk, Sharon ; Nowacek, Douglas P. ; Parks, Susan E. ; Read, Andrew J. ; Rice, Aaron N. ; Risch, Denise ; Širović, Ana ; Soldevilla, Melissa ; Stafford, Kathleen M. ; Stanistreet, Joy ; Summers, Erin ; Todd, Sean ; Warde, Ann M. ; Van Parijs, Sofie M.
    Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.
  • Article
    Monitoring Alaskan Arctic shelf ecosystems through collaborative observation networks
    (Oceanography Society, 2022-04-28) Danielson, Seth L. ; Grebmeier, Jacqueline M. ; Iken, Katrin ; Berchok, Catherine L. ; Britt, Lyle ; Dunton, Kenneth ; Eisner, Lisa B. ; Farley, Edward V. ; Fujiwara, Amane ; Hauser, Donna D.W. ; Itoh, Motoyo ; Kikuchi, Takashi ; Kotwicki, Stan ; Kuletz, Kathy J. ; Mordy, Calvin W. ; Nishino, Shigeto ; Peralta-Ferriz, Cecilia ; Pickart, Robert S. ; Stabeno, Phyllis J. ; Stafford, Kathleen M. ; Whiting, Alex V. ; Woodgate, Rebecca
    Ongoing scientific programs that monitor marine environmental and ecological systems and changes comprise an informal but collaborative, information-rich, and spatially extensive network for the Alaskan Arctic continental shelves. Such programs reflect contributions and priorities of regional, national, and international funding agencies, as well as private donors and communities. These science programs are operated by a variety of local, regional, state, and national agencies, and academic, Tribal, for-profit, and nongovernmental nonprofit entities. Efforts include research ship and autonomous vehicle surveys, year-long mooring deployments, and observations from coastal communities. Inter-program coordination allows cost-effective leveraging of field logistics and collected data into value-added information that fosters new insights unattainable by any single program operating alone. Coordination occurs at many levels, from discussions at marine mammal co-management meetings and interagency meetings to scientific symposia and data workshops. Together, the efforts represented by this collection of loosely linked long-term monitoring programs enable a biologically focused scientific foundation for understanding ecosystem responses to warming water temperatures and declining Arctic sea ice. Here, we introduce a variety of currently active monitoring efforts in the Alaskan Arctic marine realm that exemplify the above attributes.
  • Article
    Distribution of blue and sei whale vocalizations, and temperature - salinity characteristics from glider surveys in the Northern Chilean Patagonia mega-estuarine system
    (Frontiers Media, 2022-10-07) Buchan, Susannah J. ; Gutiérrez, Laura ; Baumgartner, Mark F. ; Stafford, Kathleen M. ; Ramirez, Nadin ; Pizarro, Oscar ; Cifuentes, Jose
    Northern Chilean Patagonia is a mega-estuarine system where oceanic waters mix with freshwater inputs in the coastal fjords, channels and gulfs. The aim of this study was to examine the distribution of blue and sei whales with respect to oceanographic conditions of the study area from the estuarine inner sea to the outer ocean. Ocean gliders were used, mounted with a hydrophone to determine acoustic presence of whales (Southeast Pacific and Antarctic blue whale song calls, and blue whales D-calls; sei whale downsweeps and upsweeps), and a temperature and salinity instrument. Four glider deployments were carried out in April 2018 and April-June 2019 navigating a total of 2817 kilometers during 2110 hours. To examine interannual variation, the average percentage of day with presence of calls was compared between years using the adjusted p-values for one-way ANOVA and descriptive statistics. To examine spatial variation between the hourly acoustic presence of blue whales and sei whales and temperature and salinity conditions, Generalized Linear Models (GLMs) were used. Salinities were higher in 2019 compared to 2018. Southeast Pacific blue whales produced song calls throughout the study area in both years, across estuarine and oceanic areas, but percentage of day with presence was higher in 2019 vs 2018. Percentage of day with presence of D-calls was similar between years, but higher in oceanic areas during both study periods. In contrast, the spatial pattern of sei whale acoustic presence was ambiguous and interannual variability was high, suggesting that sei whales preferred estuarine areas in 2018 and oceanic areas in 2019. We discuss possible explanations for observed acoustic presence in relation to foraging behavior and prey distribution.
  • Article
    Environmental correlates of blue and fin whale call detections in the North Pacific Ocean from 1997 to 2002
    (Inter-Research, 2009-12-03) Stafford, Kathleen M. ; Citta, John J. ; Moore, Sue E. ; Daher, Mary Ann ; George, Joseph E.
    A 6 yr time series of blue whale Balaenoptera musculus and fin whale B. physalus call detections in the North Pacific Ocean was correlated with 3 oceanographic variables (sea-surface temperature, chlorophyll a concentration, and mixed layer depth), to investigate the broad-scale calling behavior of these species. Monthly values for satellite-derived oceanographic data and whale call data were compared for 4 regions (30° longitude by 15° of latitude) encompassing the whole subarctic North Pacific and an area in the temperate northeastern Pacific. To determine predictive models for whale call occurrence, generalized linear models were used to determine which, if any, oceanographic variables might influence whale calling behavior over such broad space and time scales. Sea-surface temperature was the best oceanographic variable for predicting whale call detections for both species and all regions.
  • Article
    Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal
    (The Oceanography Society, 2016-06) Sarma, V. V. S. S. ; Rao, G. S. ; Viswanadham, R. ; Sherin, C. K. ; Salisbury, Joseph E. ; Omand, Melissa M. ; Mahadevan, Amala ; Murty, V. S. N. ; Shroyer, Emily L. ; Baumgartner, Mark F. ; Stafford, Kathleen M.
    The Bay of Bengal (BoB) is strongly density stratified due to large freshwater input from various rivers and heavy precipitation. This strong vertical stratification, along with physical processes, regulates the transport and vertical exchange of surface and subsurface water, concentrating nutrients and intensifying the oxygen minimum zone (OMZ). Here, we use basinwide measurements to describe the spatial distributions of nutrients, oxygen, and phytoplankton within the BoB during the 2013 northeast monsoon (November–December). By the time riverine water reaches the interior bay, it is depleted in the nutrients nitrate and phosphate, but not silicate. Layering of freshwater in the northern BoB depresses isopycnals, leading to a deepening of the nutricline and oxycline. Oxygen concentrations in the OMZ are lowest in the north (<5 µM). Weak along-isopycnal nutrient gradients reflect along-isopycnal stirring between ventilated surface water and deep nutrient-replenished water. Picoplankton dominate the phytoplankton population in the north, presumably outcompeting larger phytoplankton species due to their low nutrient requirements. Micro- and nanoplankton numbers are enhanced in regions with deeper mixed layers and weaker stratification, where nutrient replenishment from subsurface waters is more feasible. These are also the regions where marine mammals were sighted. Physical processes and the temperature-salinity structure in the BoB directly influence the OMZ and the depth of the oxycline and nutricline, thereby affecting the phytoplankton and marine mammal communities.
  • Article
    Fine-scale spatial and temporal acoustic occurrence of island-associated odontocetes near a mid-oceanic atoll in the northern Indian Ocean
    (Inter Research, 2022-02-03) Panicker, Divya ; Baumgartner, Mark F. ; Stafford, Kathleen M.
    Temporal patterns of oceanic predators can provide valuable information on both lunar and diel influences not just on the distributions of these predators, but also on prey patches that are often difficult to study. Mid-oceanic island chains in the northern Indian Ocean have high odontocete occurrence, but the ecology of these animals is not well characterized. We investigated fine-scale spatial and temporal patterns of island-associated odontocetes using passive acoustic monitoring from January 2019 to January 2020 around Kavaratti Island, Lakshadweep, India. Based on opportunistic recordings in the presence of odontocetes, the majority of the detected whistles were likely made by spinner dolphins Stenella longirostris. We identified a resident population whose whistle occurrence was significantly influenced by month, site, and diel and lunar cycles. More acoustic detections were made in the northeast monsoon month of November and fewer during pre-monsoon and southwest monsoon periods. Distinct day-night differences along with fine-scale temporal variability were also observed, suggesting that delphinids use nearshore waters as a daytime resting habitat. Odontocete detections were highest during the new moon period and lowest during the first quarter phase. Detection rates were higher on the south side of the island. Our study shows that solar and lunar cycles modulate odontocete vocal occurrence, presumably through influences on their prey. Similarities of odontocete occurrence around Lakshadweep to other mid-oceanic island chains suggests that an island-associated micronekton community may exist around Lakshadweep that may also be important to other pelagic species targeted by local fisheries.
  • Article
    Multipurpose acoustic networks in the integrated Arctic Ocean observing system
    (Arctic Institute of North America, 2015) Mikhalevsky, Peter N. ; Sagen, Hanne ; Worcester, Peter F. ; Baggeroer, Arthur B. ; Orcutt, John A. ; Moore, Sue E. ; Lee, Craig M. ; Vigness-Raposa, Kathleen J. ; Freitag, Lee E. ; Arrott, Matthew ; Atakan, Kuvvet ; Beszczynska-Möller, Agnieszka ; Duda, Timothy F. ; Dushaw, Brian D. ; Gascard, Jean-Claude ; Gavrilov, Alexander N. ; Keers, Henk ; Morozov, Andrey K. ; Munk, Walter H. ; Rixen, Michel ; Sandven, Stein ; Skarsoulis, Emmanuel ; Stafford, Kathleen M. ; Vernon, Frank L. ; Yuen, Mo Yan
    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This activity will be driven by increased demand for energy and the marine resources of an Arctic Ocean accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism, and search and rescue will increase the pressure on the vulnerable Arctic environment. Technologies that allow synoptic in situ observations year-round are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual, and decadal scales. These data can inform and enable both sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. In this paper, we discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic, and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings, and vehicles. We support the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary in situ Arctic Ocean observatory.
  • Article
    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data
    (Wiley, 2020-05-25) Davis, Genevieve E. ; Baumgartner, Mark F. ; Corkeron, Peter ; Bell, Joel ; Berchok, Catherine L. ; Bonnell, Julianne M. ; Bort Thornton, Jacqueline ; Brault, Solange ; Buchanan, Gary ; Cholewiak, Danielle ; Clark, Christopher W. ; Delarue, Julien ; Hatch, Leila ; Klinck, Holger ; Kraus, Scott D. ; Martin, Bruce ; Mellinger, David K. ; Moors-Murphy, Hilary ; Nieukirk, Sharon ; Nowacek, Douglas P. ; Parks, Susan E. ; Parry, Dawn ; Pegg, Nicole ; Read, Andrew J. ; Rice, Aaron N. ; Risch, Denise ; Scott, Alyssa ; Soldevilla, Melissa ; Stafford, Kathleen M. ; Stanistreet, Joy ; Summers, Erin ; Todd, Sean ; Van Parijs, Sofie M.
    Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
  • Article
    Broad-scale study of the seasonal and geographic occurrence of blue and fin whales in the Southern Indian Ocean
    (Inter-Research, 2018-12-13) Leroy, Emmanuelle C. ; Samaran, Flore ; Stafford, Kathleen M. ; Bonnel, Julien ; Royer, Jean-Yves
    The southern Indian Ocean is believed to be a natural territory for blue and fin whales. However, decades after commercial and illegal whaling decimated these populations, little is known about their current status, seasonal habitat or movements. Recent passive acoustic studies have described the presence of 4 acoustic populations of blue whales (Antarctic and 3 ‘pygmy’ types), but are generally limited temporally and geographically. Here, we examine up to 7 yr of continuous acoustic recordings (2010−2016) from a hydrophone network of 6 widely spaced sites in the southern Indian Ocean, looking for the presence of Antarctic and pygmy blue and fin whales. Power spectral density analyses of characteristic and distinct frequency bands of these species show seasonal and geographic differences among the different populations, and the overall patterns for each display interannual consistencies in timing and occurrence. Antarctic blue and fin whales are recorded across the hydrophone network, mainly from austral autumn to spring, with peak intensity in winter. Pygmy blue whales show spatial variation: Madagascan pygmy blue whales are mainly present in the west of the network, while the Australian call type is heard at the eastern sites. Both populations share a common seasonality, with a presence from January to June. Finally, the Sri Lankan call type is recorded only on a single site in the northeast. These results confirm the importance of the southern Indian Ocean for several populations of endangered large whales and present the first long-term assessment of fin whales in the southern Indian Ocean.
  • Article
    Intraseasonal variation in southeast Pacific blue whale acoustic presence, zooplankton backscatter, and oceanographic variables on a feeding ground in Northern Chilean Patagonia
    (Elsevier, 2021-11-09) Buchan, Susannah J. ; Pérez-Santos, Iván ; Narváez, Diego ; Castro, Leonardo ; Stafford, Kathleen M. ; Baumgartner, Mark F. ; Valle-Levinson, Arnoldo ; Montero, Paulina ; Gutierrez, Laura ; Rojas, Constanza ; Daneri, Giovanni ; Neira, Sergio
    Seasonal variation in the acoustic presence of blue whale calls has been widely reported for feeding grounds worldwide, however variation over the submonthly scale (several days to <1 month) has been examined to a much lesser extent. This study combines passive acoustic, hydroacoustic, and in situ oceanographic observations collected at a mooring in the Corcovado Gulf, Northern Chilean Patagonia, from January 2016-February 2017, to examine the temporal variation in blue whale acoustic occurrence and prey backscatter over seasonal and submonthly scales. Time series data for a) Southeast Pacific blue whale song calls and D-calls, b) zooplankton backscatter, c) tidal amplitude, and d) meridional and zonal wind stress were examined visually for seasonal trends. To examine submonthly timescales over the summer feeding season (January-June), wavelet transforms and wavelet coherence were applied; generalized linear models (GLM) were also applied. There was a 3-month lag between the seasonal onsets of high zooplankton backscatter (October) and blue whale acoustic presence (January), and an almost immediate drop in blue whale acoustic presence with the seasonal decrease of backscatter (June). This may be due to the use of memory by animals when timing their arrival on the feeding ground, but the timing of their departure may be related to detection of low prey availability. Over the summer feeding season, blue whale acoustic presence was strongly associated with zooplankton backscatter (GLM coefficient p ≪ 0.0001). Song calls followed a seasonal cycle, but D-calls appeared to respond to short term variations in environmental conditions over submonthly scales. Results suggest that spring tides may increase prey aggregation and/or transport into the Corcovado Gulf, leading to increased blue whale acoustic presence over 15-day or 30-day cycles; and short-lived events of increased wind stress with periodicities of 2–8 days and 16–30 days, may also contribute to the aggregation of prey. We discuss the strengths and limitations of coupling passive and active acoustic data to examine drivers of blue whale distribution.
  • Article
    ASIRI : an ocean–atmosphere initiative for Bay of Bengal
    (American Meteorological Society, 2016-11-22) Wijesekera, Hemantha W. ; Shroyer, Emily L. ; Tandon, Amit ; Ravichandran, M. ; Sengupta, Debasis ; Jinadasa, S. U. P. ; Fernando, Harindra J. S. ; Agrawal, Neeraj ; Arulananthan, India K. ; Bhat, G. S. ; Baumgartner, Mark F. ; Buckley, Jared ; Centurioni, Luca R. ; Conry, Patrick ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hormann, Verena ; Jarosz, Ewa ; Jensen, Tommy G. ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lee, Craig M. ; Leo, Laura S. ; Lozovatsky, Iossif ; Lucas, Andrew J. ; MacKinnon, Jennifer A. ; Mahadevan, Amala ; Nash, Jonathan D. ; Omand, Melissa M. ; Pham, Hieu ; Pinkel, Robert ; Rainville, Luc ; Ramachandran, Sanjiv ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Send, Uwe ; Sharma, Rashmi ; Simmons, Harper L. ; Stafford, Kathleen M. ; St. Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Venkatesan, Ramasamy ; Teague, William J. ; Wang, David W. ; Waterhouse, Amy F. ; Weller, Robert A. ; Whalen, Caitlin B.
    Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
  • Article
    Technological advancements in observing the upper ccean in the Bay of Bengal : education and capacity building
    (The Oceanography Society, 2016-06) Tandon, Amit ; D'Asaro, Eric A. ; Stafford, Kathleen M. ; Sengupta, Debasis ; Ravichandran, M. ; Baumgartner, Mark F. ; Venkatesan, Ramasamy ; Paluszkiewicz, Theresa
    Because the monsoon strongly affects India, there is a clear need for indigenous expertise in advancing the science that underlies monsoon prediction. The safety of marine transport in the tropics relies on accurate atmospheric and ocean environment predictions on weekly and longer time scales in the Indian Ocean. This need to better forecast the monsoon motivates the United States to advance basic research and support training of early career US scientists in tropical oceanography. Earlier Indian field campaigns and modeling studies indicated that an improved understanding of the interactions between the upper ocean and the atmosphere in the Bay of Bengal at finer spatial and temporal scales could lead to improved intraseasonal monsoon forecasts. The joint US Air-Sea Interactions Regional Initiative (ASIRI) and the Indian Ocean Mixing and Monsoon (OMM) program studied these interactions, resulting in scientific advances described by articles in this special issue of Oceanography. In addition to these scientific advances, and while also developing long-lasting collaborations and building indigenous Indian capability, a key component of these programs is training early career scientists from India and the United States. Training has been focusing on fine-scale and mixing studies of the upper ocean, air-sea interactions, and marine mammal research. Advanced methods in instrumentation, autonomous robotic platforms, experimental design, data analysis, and modeling have been emphasized. Students and scientists from India and the United States at all levels have been participating in joint cruises on Indian and US research vessels and in training participants in modern tools and methods at summer schools, at focused research workshops, and during research visits. Such activities are building new indigenous capability in India, training a new cadre of US scientists well versed in monsoon air-sea interaction, and forging strong links between Indian and US oceanographic institutions.
  • Article
    Seasonal variation of the Beaufort shelfbreak jet and its relationship to Arctic cetacean occurrence
    (John Wiley & Sons, 2016-12-02) Lin, Peigen ; Pickart, Robert S. ; Stafford, Kathleen M. ; Moore, G. W. K. ; Torres, Daniel J. ; Bahr, Frank B. ; Hu, Jianyu
    Using mooring time series from September 2008 to August 2012, together with ancillary atmospheric and satellite data sets, we quantify the seasonal variations of the shelfbreak jet in the Alaskan Beaufort Sea and explore connections to the occurrences of bowhead and beluga whales. Wind patterns during the 4 year study period are different from the long-term climatological conditions that the springtime peak in easterly winds shifted from May to June and the autumn peak was limited to October instead of extending farther into the fall. These changes were primarily due to the behavior of the two regional atmospheric centers of action, the Aleutian Low and Beaufort High. The volume transport of the shelfbreak jet, which peaks in the summer, was decomposed into a background (weak wind) component and a wind-driven component. The wind-driven component is correlated to the Pt. Barrow, AK alongcoast wind speed record although a more accurate prediction is obtained when considering the ice thickness at the mooring site. An upwelling index reveals that wind-driven upwelling is enhanced in June and October when storms are stronger and longer-lasting. The seasonal variation of Arctic cetacean occurrence is dominated by the eastward migration in spring, dictated by pack-ice patterns, and westward migration in fall, coincident with the autumn peak in shelfbreak upwelling intensity.
  • Article
    Inter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types
    (Nature Research, 2020-05-15) Malige, Franck ; Patris, Julie ; Buchan, Susannah J. ; Stafford, Kathleen M. ; Shabangu, Fannie ; Findlay, Ken ; Hucke-Gaete, Rodrigo ; Neira, Sergio ; Clark, Christopher W. ; Glotin, Hervé
    A decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, using acoustic data from several different sources in the eastern Pacific Ocean ranging between the Equator and Chilean Patagonia. The pulse rate of the song units as well as their peak frequency were measured using two different methods (summed auto-correlation and Fourier transform). The sources of error associated with each measurement were assessed. There was a linear decline in both parameters for the more common song type (southeast Pacific song type n.2) between 1997 to 2017. An abbreviated analysis, also showed a frequency decline in the scarcer southeast Pacific song type n.1 between 1970 to 2014, revealing that both song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequency to examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song types reported in the literature and a discussion on the reasons of the frequency shift are presented.