Meredith Michael P.

No Thumbnail Available
Last Name
Meredith
First Name
Michael P.
ORCID
0000-0002-7342-7756

Search Results

Now showing 1 - 15 of 15
  • Article
    West Antarctic Peninsula : an ice-dependent coastal marine ecosystem in transition
    (The Oceanography Society, 2013-09) Ducklow, Hugh W. ; Fraser, William R. ; Meredith, Michael P. ; Stammerjohn, Sharon E. ; Doney, Scott C. ; Martinson, Douglas G. ; Sailley, Sevrine F. ; Schofield, Oscar M. E. ; Steinberg, Deborah K. ; Venables, Hugh J. ; Amsler, Charles D.
    The extent, duration, and seasonality of sea ice and glacial discharge strongly influence Antarctic marine ecosystems. Most organisms' life cycles in this region are attuned to ice seasonality. The annual retreat and melting of sea ice in the austral spring stratifies the upper ocean, triggering large phytoplankton blooms. The magnitude of the blooms is proportional to the winter extent of ice cover, which can act as a barrier to wind mixing. Antarctic krill, one of the most abundant metazoan populations on Earth, consume phytoplankton blooms dominated by large diatoms. Krill, in turn, support a large biomass of predators, including penguins, seals, and whales. Human activity has altered even these remote ecosystems. The western Antarctic Peninsula region has warmed by 7°C over the past 50 years, and sea ice duration has declined by almost 100 days since 1978, causing a decrease in phytoplankton productivity in the northern peninsula region. Besides climate change, Antarctic marine systems have been greatly altered by harvesting of the great whales and now krill. It is unclear to what extent the ecosystems we observe today differ from the pristine state.
  • Article
    Modification of turbulent dissipation rates by a deep Southern Ocean eddy
    (John Wiley & Sons, 2015-05-07) Sheen, Katy L. ; Brearley, J. Alexander ; Naveira Garabato, Alberto C. ; Smeed, David A. ; St. Laurent, Louis C. ; Meredith, Michael P. ; Thurnherr, Andreas M. ; Waterman, Stephanie N.
    The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, middepth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray tracing approximation is employed as a heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows.
  • Article
    The annual salinity cycle of the Denmark Strait Overflow
    (American Geophysical Union, 2022-03-22) Opher, Jacob G. ; Brearley, J. Alexander ; Dye, Stephen R. ; Pickart, Robert S. ; Renfrew, Ian A. ; Harden, Benjamin E. ; Meredith, Michael P.
    The Denmark Strait Overflow (DSO) is an important source of dense water input to the deep limb of the Atlantic Meridional Overturning Circulation (AMOC). It is fed by separate currents from the north that advect dense water masses formed in the Nordic Seas and Arctic Ocean which then converge at Denmark Strait. Here we identify an annual salinity cycle of the DSO, characterized by freshening in winter and spring. The freshening is linked to freshening of the Shelfbreak East Greenland Current in the Blosseville Basin north of the Denmark Strait. We demonstrate that the East Greenland Current advects fresh pycnocline water above the recirculating Atlantic Water, which forms a low salinity lid for the overflow in Denmark Strait and in the Irminger Basin. This concept is supported by intensified freshening of the DSO in lighter density classes on the Greenland side of the overflow. The salinity of the DSO in the Irminger Basin is significantly correlated with northerly/northeasterly winds in the Blosseville Basin at a lag of 3–4 months, consistent with estimated transit times. This suggests that wind driven variability of DSO source water exerts an important influence on the salinity variability of the downstream DSO, and hence the composition of the deep limb of the AMOC.
  • Article
    Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current.
    (National Academy of Sciences, 2019-07-02) Naveira Garabato, Alberto C. ; Frajka-Williams, Eleanor E. ; Spingys, Carl P. ; Legg, Sonya ; Polzin, Kurt L. ; Forryan, Alexander ; Abrahamsen, E. Povl ; Buckingham, Christian E. ; Griffies, Stephen M. ; McPhail, Stephen D. ; Nicholls, Keith W. ; Thomas, Leif N. ; Meredith, Michael P.
    The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation—an abyssal boundary current in the Southern Ocean—to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary–interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.
  • Article
    Penguin biogeography along the West Antarctic Peninsula : testing the canyon hypothesis with Palmer LTER observations
    (The Oceanography Society, 2013-09) Schofield, Oscar M. E. ; Ducklow, Hugh W. ; Bernard, Kim S. ; Doney, Scott C. ; Patterson-Fraser, Donna ; Gorman, Kristen ; Martinson, Douglas G. ; Meredith, Michael P. ; Saba, Grace ; Stammerjohn, Sharon E. ; Steinberg, Deborah K. ; Fraser, William R.
    The West Antarctic Peninsula (WAP) is home to large breeding colonies of the ice-dependent Antarctic Adélie penguin (Pygoscelis adeliae). Although the entire inner continental shelf is highly productive, with abundant phytoplankton and krill populations, penguin colonies are distributed heterogeneously along the WAP. This ecological conundrum targets a long-standing question of interest: what environmental factors structure the locations of Adélie penguin "hot spots" throughout the WAP?
  • Article
    The freshwater system west of the Antarctic Peninsula : spatial and temporal changes
    (American Meteorological Society, 2013-03-01) Meredith, Michael P. ; Venables, Hugh J. ; Clarke, Andrew ; Ducklow, Hugh W. ; Erickson, Matthew ; Leng, Melanie J. ; Lenaerts, Jan T. M. ; van den Broeke, Michiel R.
    Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
  • Article
    Climate forcing for dynamics of dissolved inorganic nutrients at Palmer Station, Antarctica : an interdecadal (1993–2013) analysis
    (John Wiley & Sons, 2016-09-17) Kim, Hyewon Heather ; Doney, Scott C. ; Iannuzzi, Richard A. ; Meredith, Michael P. ; Martinson, Douglas G. ; Ducklow, Hugh W.
    We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
  • Preprint
    The role of sea ice formation in cycling of aluminium in northern Marguerite Bay, Antarctica
    ( 2009-11-17) Hendry, Katharine R. ; Meredith, Michael P. ; Measures, Christopher I. ; Carson, Damien S. ; Rickaby, Rosalind E. M.
    The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005-2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contributes secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 μg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment-water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.
  • Preprint
    Controls on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral) from an Antarctic sea-ice environment
    ( 2008-11) Hendry, Katharine R. ; Rickaby, Rosalind E. M. ; Meredith, Michael P. ; Elderfield, Henry
    The polar foraminifera Neogloboquadrina pachyderma (sinistral) dominates assemblages from the high latitude Southern Ocean, which is a key region for paleoclimate studies. Here, we use N. pachyderma (s.) harvested from sediment traps off the West Antarctic Peninsula to construct a seasonal time series for the calibration of calcite proxies in a high latitude seasonal sea-ice environment where temperature is decoupled from other environmental parameters. We have used a combination of δ18OCaCO3 and δ13CCaCO3 to decipher the calcification temperature and salinity, which reflect that N. pachyderma (s.) live in surface waters throughout the year, and at the ice-water interface in austral winter. Further, our results demonstrate that, during winter, the uptake of trace metals into N. pachyderma (s.) calcite is influenced by secondary environmental conditions in addition to temperature during periods of sea-ice. We suggest an elevated carbonate ion concentration at the ice-water interface resulting from biological utilisation CO2 could influence calcification in foraminifera. We demonstrate that for N. pachyderma (s.) Mg/Ca and Sr/Ca ratios are linear functions of calcification temperature and [CO32-]. N. pachyderma (s.) Mg/Ca ratios exhibit temperature sensitivity similar to previous studies (~ 10 % per °C) and a sensitivity to [CO32-] of ~ 1 % per μmol kg-1). Sr/Ca ratios are less sensitive to environmental parameters, exhibiting < 1% increase per °C and per 10 μmol kg-1. We show how a multi-proxy approach could be used to constrain past high latitude surface water temperature and [CO32-].
  • Article
    Boundary mixing in Orkney Passage outflow
    (John Wiley & Sons, 2014-12-16) Polzin, Kurt L. ; Naveira Garabato, Alberto C. ; Abrahamsen, E. Povl ; Jullion, Loic ; Meredith, Michael P.
    One of the most remarkable features of contemporary oceanic climate change is the warming and contraction of Antarctic Bottom Water over much of global ocean abyss. These signatures represent changes in ventilation mediated by mixing and entrainment processes that may be location-specific. Here we use available data to document, as best possible, those mixing processes as Weddell Sea Deep and Bottom Waters flow along the South Orkney Plateau, exit the Weddell Sea via Orkney Passage and fill the abyssal Scotia Sea. First, we find that an abrupt transition in topography upstream of Orkney Passage delimits the extent of the coldest waters along the Plateau's flanks and may indicate a region of especially intense mixing. Second, we revisit a control volume budget by Heywood et al. (2002) for waters trapped within the Scotia Sea after entering through Orkney Passage. This budget requires extremely vigorous water mass transformations with a diapycnal transfer coefficient of inline image m2 s−1. Evidence for such intense diapycnal mixing is not found in the abyssal Scotia Sea interior and, while we do find large rates of diapycnal mixing in conjunction with a downwelling Ekman layer on the western side of Orkney Passage, it is insufficient to close the budget. This leads us to hypothesize that the Heywood budget is closed by a boundary mixing process in which the Ekman layer associated with the Weddell Sea Deep Water boundary current experiences relatively large vertical scale overturning associated with tidal forcing along the southern boundary of the Scotia Sea.
  • Article
    Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean : results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)
    (John Wiley & Sons, 2013-06-04) Sheen, Katy L. ; Brearley, J. Alexander ; Naveira Garabato, Alberto C. ; Smeed, David A. ; Waterman, Stephanie N. ; Ledwell, James R. ; Meredith, Michael P. ; St. Laurent, Louis C. ; Thurnherr, Andreas M. ; Toole, John M. ; Watson, Andrew J.
    The spatial distribution of turbulent dissipation rates and internal wavefield characteristics is analyzed across two contrasting regimes of the Antarctic Circumpolar Current (ACC), using microstructure and finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Mid-depth turbulent dissipation rates are found to increase from inline image in the Southeast Pacific to inline image in the Scotia Sea, typically reaching inline image within a kilometer of the seabed. Enhanced levels of turbulent mixing are associated with strong near-bottom flows, rough topography, and regions where the internal wavefield is found to have enhanced energy, a less-inertial frequency content and a dominance of upward propagating energy. These results strongly suggest that bottom-generated internal waves play a major role in determining the spatial distribution of turbulent dissipation in the ACC. The energy flux associated with the bottom internal wave generation process is calculated using wave radiation theory, and found to vary between 0.8 mW m−2 in the Southeast Pacific and 14 mW m−2 in the Scotia Sea. Typically, 10%–30% of this energy is found to dissipate within 1 km of the seabed. Comparison between turbulent dissipation rates inferred from finestructure parameterizations and microstructure-derived estimates suggests a significant departure from wave-wave interaction physics in the near-field of wave generation sites.
  • Article
    Modeling of the influence of sea ice cycle and Langmuir circulation on the upper ocean mixed layer depth and freshwater distribution at the West Antarctic Peninsula
    (American Geophysical Union, 2020-08-03) Schultz, Cristina ; Doney, Scott C. ; Zhang, Weifeng G. ; Regan, Heather ; Holland, Paul R. ; Meredith, Michael P. ; Stammerjohn, Sharon E.
    The Southern Ocean is chronically undersampled due to its remoteness, harsh environment, and sea ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data; however, they often underestimate surface mixed layer depth (MLD), with consequences for surface water‐column temperature, salinity, and nutrient concentration. In this study, a coupled circulation and sea ice model was implemented for the region adjacent to the West Antarctic Peninsula, a climatically sensitive region which has exhibited decadal trends towards higher ocean temperature, shorter sea ice season, and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air‐ice drag coefficients and Langmuir circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air‐ice drag coefficient also increased modeled MLD by similar amounts and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for biases towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the West Antarctic Peninsula during late summer and suggests that areas of intense summertime sea ice melt can still show net annual freezing due to high sea ice formation during the winter.
  • Article
    Estimating the recharge properties of the deep ocean using noble gases and helium isotopes
    (John Wiley & Sons, 2016-08-18) Loose, Brice ; Jenkins, William J. ; Moriarty, Roisin ; Brown, Peter ; Jullion, Loic ; Naveira Garabato, Alberto C. ; Valdes, Sinhue Torres ; Hoppema, Mario ; Ballentine, Christopher J. ; Meredith, Michael P.
    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are −1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is −0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.
  • Article
    OceanGliders: A component of the integrated GOOS
    (Frontiers Media, 2019-10-02) Testor, Pierre ; de Young, Brad ; Rudnick, Daniel L. ; Glenn, Scott ; Hayes, Daniel J. ; Lee, Craig M. ; Pattiaratchi, Charitha ; Hill, Katherine Louise ; Heslop, Emma ; Turpin, Victor ; Alenius, Pekka ; Barrera, Carlos ; Barth, John A. ; Beaird, Nicholas ; Bécu, Guislain ; Bosse, Anthony ; Bourrin, François ; Brearley, J. Alexander ; Chao, Yi ; Chen, Sue ; Chiggiato, Jacopo ; Coppola, Laurent ; Crout, Richard ; Cummings, James A. ; Curry, Beth ; Curry, Ruth G. ; Davis, Richard F. ; Desai, Kruti ; DiMarco, Steven F. ; Edwards, Catherine ; Fielding, Sophie ; Fer, Ilker ; Frajka-Williams, Eleanor ; Gildor, Hezi ; Goni, Gustavo J. ; Gutierrez, Dimitri ; Haugan, Peter M. ; Hebert, David ; Heiderich, Joleen ; Henson, Stephanie A. ; Heywood, Karen J. ; Hogan, Patrick ; Houpert, Loïc ; Huh, Sik ; Inall, Mark E. ; Ishii, Masao ; Ito, Shin-ichi ; Itoh, Sachihiko ; Jan, Sen ; Kaiser, Jan ; Karstensen, Johannes ; Kirkpatrick, Barbara ; Klymak, Jody M. ; Kohut, Josh ; Krahmann, Gerd ; Krug, Marjolaine ; McClatchie, Sam ; Marin, Frédéric ; Mauri, Elena ; Mehra, Avichal ; Meredith, Michael P. ; Meunier, Thomas ; Miles, Travis ; Morell, Julio M. ; Mortier, Laurent ; Nicholson, Sarah ; O'Callaghan, Joanne ; O'Conchubhair, Diarmuid ; Oke, Peter ; Pallás-Sanz, Enric ; Palmer, Matthew D. ; Park, Jong Jin ; Perivoliotis, Leonidas ; Poulain, Pierre Marie ; Perry, Ruth ; Queste, Bastien ; Rainville, Luc ; Rehm, Eric ; Roughan, Moninya ; Rome, Nicholas ; Ross, Tetjana ; Ruiz, Simon ; Saba, Grace ; Schaeffer, Amandine ; Schönau, Martha ; Schroeder, Katrin ; Shimizu, Yugo ; Sloyan, Bernadette M. ; Smeed, David A. ; Snowden, Derrick ; Song, Yumi ; Swart, Sebastiaan ; Tenreiro, Miguel ; Thompson, Andrew ; Tintore, Joaquin ; Todd, Robert E. ; Toro, Cesar ; Venables, Hugh J. ; Wagawa, Taku ; Waterman, Stephanie N. ; Watlington, Roy A. ; Wilson, Doug
    The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
  • Article
    The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation
    (John Wiley & Sons, 2014-06-05) Jullion, Loic ; Naveira Garabato, Alberto C. ; Bacon, Sheldon ; Meredith, Michael P. ; Brown, Peter J. ; Torres-Valdes, Sinhue ; Speer, Kevin G. ; Holland, Paul R. ; Dong, Jun ; Bakker, Dorothee C. E. ; Hoppema, Mario ; Loose, Brice ; Venables, Hugh J. ; Jenkins, William J. ; Messias, Marie-Jose ; Fahrbach, Eberhard
    The horizontal and vertical circulation of the Weddell Gyre is diagnosed using a box inverse model constructed with recent hydrographic sections and including mobile sea ice and eddy transports. The gyre is found to convey 42 ± 8 Sv (1 Sv = 106 m3 s–1) across the central Weddell Sea and to intensify to 54 ± 15 Sv further offshore. This circulation injects 36 ± 13 TW of heat from the Antarctic Circumpolar Current to the gyre, and exports 51 ± 23 mSv of freshwater, including 13 ± 1 mSv as sea ice to the midlatitude Southern Ocean. The gyre's overturning circulation has an asymmetric double-cell structure, in which 13 ± 4 Sv of Circumpolar Deep Water (CDW) and relatively light Antarctic Bottom Water (AABW) are transformed into upper-ocean water masses by midgyre upwelling (at a rate of 2 ± 2 Sv) and into denser AABW by downwelling focussed at the western boundary (8 ± 2 Sv). The gyre circulation exhibits a substantial throughflow component, by which CDW and AABW enter the gyre from the Indian sector, undergo ventilation and densification within the gyre, and are exported to the South Atlantic across the gyre's northern rim. The relatively modest net production of AABW in the Weddell Gyre (6 ± 2 Sv) suggests that the gyre's prominence in the closure of the lower limb of global oceanic overturning stems largely from the recycling and equatorward export of Indian-sourced AABW.