Blaschek
Michael
Blaschek
Michael
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleHolocene North Atlantic Overturning in an atmosphere-ocean-sea ice model compared to proxy-based reconstructions(John Wiley & Sons, 2015-11-24) Blaschek, Michael ; Renssen, Hans ; Kissel, Catherine ; Thornalley, David J. R.Climate and ocean circulation in the North Atlantic region changed over the course of the Holocene, partly because of disintegrating ice sheets and partly because of an orbital-induced insolation trend. In the Nordic Seas, this impact was accompanied by a rather small, but significant, amount of Greenland ice sheet melting. We have employed the EMIC LOVECLIM and compared our model simulations with proxy-based reconstructions of δ13C, sortable silt, and magnetic susceptibility (κ) used to infer changes in past ocean circulation over the last 9000 years. The various reconstructions exhibit different long-term evolutions suggesting changes in either the overturning of the Atlantic in total or of subcomponents of the ocean circulation, such as the overflow waters across the Greenland-Scotland ridge. Thus, the question arises whether these reconstructions are consistent with each other or not. A comparison with model results indicates that δ13C, employed as an indicator of overturning, agrees well with the long-term evolution of the modeled Atlantic meridional overturning circulation (AMOC). The model results suggest that different long-term trends in subcomponents of the AMOC, such as Iceland-Scotland overflow water, are consistent with proxy-based reconstructions and allow some of the reconstructions to be reconciled with the modeled and reconstructed (from δ13C) AMOC evolution. We find a weak early Holocene AMOC, which recovers by 7 kyr B.P. and shows a weak increasing trend of 88 ± 1 mSv/kyr toward present, with relatively low variability on centennial to millennial timescales.
-
ArticleLong-term variations in Iceland–Scotland overflow strength during the Holocene(Copernicus Publications on behalf of the European Geosciences Union, 2013-09-03) Thornalley, David J. R. ; Blaschek, Michael ; Davies, F. J. ; Praetorius, Summer K. ; Oppo, Delia W. ; McManus, Jerry F. ; Hall, Ian R. ; Kleiven, Helga F. ; Renssen, Hans ; McCave, I. NickThe overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow.