Zhou
Meng
Zhou
Meng
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
PreprintDynamics of a mesoscale eddy off Cape Ann, Massachusetts in May 2005( 2011-08-18) Jiang, Mingshun ; Zhou, Meng ; Libby, Scott P. ; Anderson, Donald M.Observations and numerical modeling indicate that a mesoscale anti-cyclonic eddy formed south of Cape Ann at the northern entrance of Massachusetts Bay (MB) during May 2005, when large river discharges in the western Gulf of Maine and two strong Nor’easters passing through the regions led to an unprecedented toxic Alexandrium fundyense bloom (red tide). Both model results and field measurements suggest that the western Maine coastal current separated from Cape Ann around May 7-8, and the eddy formed on around May 10. The eddy was trapped at the formation location for about a week before detaching from the coastline and moving slowly southward on May 17. Both model results and theoretical analysis suggest that the separation of the coastal current from the coast and subsequent eddy formation were initiated at the subsurface by an adverse pressure gradient between Cape Ann and MB due to the higher sea level set up by onshore Ekman transport and higher density in downstream MB. After the formation, the eddy was maintained by the input of vorticity transported by the coastal current from the north, and local vorticity generation around the cape by the horizontal gradients of wind-driven currents, bottom stress, and water density induced by the Merrimack River plume. Observations and model results indicate that the anti-cyclonic eddy significantly changed the pathway of nutrient and biota transport into the coastal areas and enhanced phytoplankton including Alexandrium abundances around the perimeter of the eddy and in the western coast of MB.
-
ArticleOverview of the MOSAiC expedition: physical oceanography(University of California Press, 2022-02-07) Rabe, Benjamin ; Heuzé, Céline ; Regnery, Julia ; Aksenov, Yevgeny ; Allerholt, Jacob ; Athanase, Marylou ; Bai, Youcheng ; Basque, Chris R. ; Bauch, Dorothea ; Baumann, Till M. ; Chen, Dake ; Cole, Sylvia T. ; Craw, Lisa ; Davies, Andrew ; Damm, Ellen ; Dethloff, Klaus ; Divine, Dmitry V. ; Doglioni, Francesca ; Ebert, Falk ; Fang, Ying-Chih ; Fer, Ilker ; Fong, Allison A. ; Gradinger, Rolf ; Granskog, Mats A. ; Graupner, Rainer ; Haas, Christian ; He, Hailun ; Hoppmann, Mario ; Janout, Markus A. ; Kadko, David ; Kanzow, Torsten C. ; Karam, Salar ; Kawaguchi, Yusuke ; Koenig, Zoe ; Kong, Bin ; Krishfield, Richard A. ; Krumpen, Thomas ; Kuhlmey, David ; Kuznetsov, Ivan ; Lan, Musheng ; Laukert, Georgi ; Lei, Ruibo ; Li, Tao ; Torres-Valdes, Sinhue ; Lin, Lina ; Lin, Long ; Liu, Hailong ; Liu, Na ; Loose, Brice ; Ma, Xiaobing ; McKay, Rosalie ; Mallet, Maria ; Mallett, Robbie ; Maslowski, Wieslaw ; Mertens, Christian ; Mohrholz, Volker ; Muilwijk, Morven ; Nicolaus, Marcel ; O’Brien, Jeffrey K. ; Perovich, Donald K. ; Ren, Jian ; Rex, Markus ; Ribeiro, Natalia ; Rinke, Annette ; Schaffer, Janin ; Schuffenhauer, Ingo ; Schulz, Kirstin ; Shupe, Matthew ; Shaw, William J. ; Sokolov, Vladimir T. ; Sommerfeld, Anja ; Spreen, Gunnar ; Stanton, Timothy P. ; Stephens, Mark ; Su, Jie ; Sukhikh, Natalia ; Sundfjord, Arild ; Thomisch, Karolin ; Tippenhauer, Sandra ; Toole, John M. ; Vredenborg, Myriel ; Walter, Maren ; Wang, Hangzhou ; Wang, Lei ; Wang, Yuntao ; Wendisch, Manfred ; Zhao, Jinping ; Zhou, Meng ; Zhu, JialiangArctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
-
ArticleDynamical controls of the eastward transport of overwintering Calanus finmarchicus from the Lofoten Basin to the Continental Slope(American Geophysical Union, 2022-09-06) Dong, Huizi ; Zhou, Meng ; Smith, Walker O. ; Li, Baosheng ; Hu, Ziyuan ; Basedow, Sünnje L. ; Gaardsted, Frank ; Zhang, Zhaoru ; Zhong, Yiseniapausing populations of Calanus finmarchicus at depth in the Lofoten Basin (LB) return to the continental shelf and slope off the Lofoten-Vesterålen Islands during the phytoplankton spring bloom to feed and spawn, forming surface swarms with a great abundance. To study how overwintering populations of C. finmarchicus move with the deep currents and return to the shelf, Lagrangian transport characteristics of particles in deep water between 2008 and 2019 were analyzed using Global Ocean Reanalysis and Simulation re-analysis data and Lagrangian Coherent Structures (LCSs). Our analyses revealed that persistent eastward transport of diapausing C. finmarchicus between LB and continental slope occurred mainly between 600 and 1,100 m in the Arctic Intermediate Water. The consistency of the vertical distributions of C. finmarchicus abundance and salinity further suggests that physical factors control the horizontal distribution of the species. Hovmöller diagrams of kinetic energy indicate that there is an eastward advection of mean current at depth. The co-occurrence between the eastward transport of LCSs and the eastward advection of the mean current provides direct evidence that the life history of C. finmarchicus is subjected to physical control in the Norwegian Sea.
-
ArticleSurface chlorophyll anomalies induced by mesoscale eddy-wind interactions in the northern Norwegian Sea(Frontiers Media, 2022-09-29) Dong, Huizi ; Zhou, Meng ; Raj, Roshin P. ; Smith, Walker O. ; Basedow, Sünnje L. ; Ji, Rubao ; Ashjian, Carin ; Zhang, Zhaoru ; Hu, ZiyuanThe substantial productivity of the northern Norwegian Sea is closely related to its strong mesoscale eddy activity, but how eddies affect phytoplankton biomass levels in the upper ocean through horizontal and vertical transport-mixing has not been well quantified. To assess mesoscale eddy induced ocean surface chlorophyll-a concentration (CHL) anomalies and modulation of eddy-wind interactions in the region, we constructed composite averaged CHL and wind anomalies from 3,841 snapshots of anticyclonic eddies (ACEs) and 2,727 snapshots of cyclonic eddies (CEs) over the period 2000-2020 using satellite altimetry, scatterometry, and ocean color products. Results indicate that eddy pumping induces negative (positive) CHL anomalies within ACEs (CEs), while Ekman pumping caused by wind-eddy interactions induces positive (negative) CHL anomalies within ACEs (CEs). Eddy-induced Ekman upwelling plays a key role in the unusual positive CHL anomalies within the ACEs and results in the vertical transport of nutrients that stimulates phytoplankton growth and elevated productivity of the region. Seasonal shoaling of the mixed layer depth (MLD) results in greater irradiance levels available for phytoplankton growth, thereby promoting spring blooms, which in combination with strong eddy activity leads to large CHL anomalies in May and June. The combined processes of wind-eddy interactions and seasonal shallowing of MLD play a key role in generating surface CHL anomalies and is a major factor in the regulation of phytoplankton biomass in the northern Norwegian Sea.
-
PreprintWinter mesoscale circulation on the shelf slope region of the southern Drake Passage( 2013-02-20) Zhou, Meng ; Zhu, Yiwu ; Measures, Christopher I. ; Hatta, Mariko ; Charette, Matthew A. ; Gille, Sarah T. ; Frants, Marina ; Jiang, Mingshun ; Mitchell, B. GregoryAn austral winter cruise in July-August 2006 was conducted to study the winter circulation and iron delivery processes in the Southern Drake Passage and Bransfield Strait. Results from current and hydrographic measurements revealed a circulation pattern similar to that of the austral summer season observed in previous studies: The Shackleton Transverse Ridge (STR) in the southern Drake Passage blocks a part of the eastward Antarctic Circumpolar Current (ACC) which forces the ACC to detour southward, produces a Taylor Column over the STR, and forms an ACC jet within the Shackleton Gap, a deep channel between the STR and the shelf of Elephant Island. Observations show that to the west of the STR, the Upper Circumpolar Deep Water (UCDW) intruded onto the shelf around the South Shetland Islands while to the east of the STR, shelf waters were transported off the northern shelf of Elephant Island. Along a similar west-east transect approximately 50 km off the shelf, the northward transport of shelf waters was approximately 2.4 and 1.2 Sv in the austral winter and summer, respectively. The waters around Elephant Island primarily consist of the UCDW that has been modified by local cooling and freshening, unmodified UCDW that has recently intruded onto the shelf, and Bransfield Current water that is a mixture of shelf and Bransfield Strait waters. Weddell Sea outflows were observed which affect the hydrography and circulation in the Bransfield Strait and indirectly affect the circulation patterns in the southern Drake Passage and around Elephant Island. Two Fe enrichment and transport mechanisms are proposed that intrusions of the UCDW onto the northern shelf region of the South Shetland Islands is considered as the results of Ekman pumping due to prevailing westerly wind in the region while the offshelf transport of shelf waters in the shelf region east of Elephant Island is due to acquisition of positive vorticity by shelf waters from horizontal mixing with onshelf intruded ACC waters.
-
PreprintSeasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea( 2013-01-23) Jiang, Mingshun ; Charette, Matthew A. ; Measures, Christopher I. ; Zhu, Yiwu ; Zhou, MengThe seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (~2km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 year) to investigate the sediment Fe input and its transport. The model is spun up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
-
DatasetBiomass data from an Optical Plankton Counter (OPC) collected on R/V New Horizon, R/V Thomas G. Thompson, and R/V Roger Revelle cruises NH0005, NH0007, T0205, and R0208 in the Northeast Pacific from 2000-2002 (NEP project)(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-12-27) Zhou, MengBiomass data from an Optical Plankton Counter (OPC) collected on R/V New Horizon, R/V Thomas G. Thompson, and R/V Roger Revelle cruises NH0005, NH0007, T0205, and R0208 in the Northeast Pacific from 2000-2002. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3744