Willis Claire

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean
    ( 2007-11-26) Sohn, Robert A. ; Willis, Claire ; Humphris, Susan E. ; Shank, Timothy M. ; Singh, Hanumant ; Edmonds, Henrietta N. ; Kunz, Clayton G. ; Hedman, Ulf ; Helmke, Elisabeth ; Jakuba, Michael V. ; Liljebladh, Bengt ; Linder, Julia ; Murphy, Christopher A. ; Nakamura, Ko-ichi ; Sato, Taichi ; Schlindwein, Vera ; Stranne, Christian ; Tausenfreund, Upchurch ; Winsor, Peter ; Jakobsson, Martin ; Soule, Samuel A.
    Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic terrain has been visually surveyed and/or sampled, the available evidence suggests that explosive eruptions are rare on MORs, particularly at depths below the critical point for steam (3000 m). A pyroclastic deposit has never been observed on the seafloor below 3000 m, presumably because the volatile content of mid-ocean ridge basalts is generally too low to produce the gas fractions required to fragment a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our imagery reveals that the axial valley at 4000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment magma at these depths, which is ~10x greater than the highest values measured to-date in a MOR basalt. These observations raise important questions regarding the accumulation and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6- 14 mm yr-1, full-rate), and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global MOR volcanic system.
  • Preprint
    Long-baseline acoustic navigation for under-ice autonomous underwater vehicle operations
    ( 2008-05-19) Jakuba, Michael V. ; Roman, Christopher N. ; Singh, Hanumant ; Murphy, Christopher A. ; Kunz, Clayton G. ; Willis, Claire ; Sato, Taichi ; Sohn, Robert A.
    The recent Arctic GAkkel Vents Expedition (AGAVE) to the Arctic Ocean’s Gakkel Ridge (July/August 2007) aboard the Swedish ice-breaker I/B Oden employed autonomous underwater vehicles (AUVs) for water-column and ocean bottom surveys. These surveys were unique among AUV operations to date in requiring georeferenced navigation in proximity to the seafloor beneath permanent and moving ice cover. We report results for long-baseline (LBL) acoustic navigation during autonomous under-ice surveys near the seafloor and adaptation of the LBL concept for several typical operational situations including navigation in proximity to the ship during vehicle recoveries. Fixed seafloor transponders were free-fall deployed from the ship for deep positioning. The ship’s helicopter collected acoustic travel times from several locations to geo-reference the transponders’ locations, subject to the availability of openings in the ice. Two shallow beacons suspended from the ship provided near-surface spherical navigation in ship-relative coordinates. During routine recoveries, we used this system to navigate the vehicles into open water near the ship before commanding them to surface. In cases where a vehicle was impaired, its position was still determined acoustically through some combination of its acoustic modem, the fixed seafloor transponders, the ship-deployed transponders, and an on-board backup relay transponder. The techniques employed included ranging adapted for a moving origin and hyperbolic navigation.
  • Article
    Evidence and patterns of tuna spawning inside a large no-take marine protected area
    (Nature Research, 2019-07-24) Hernández, Christina M. ; Witting, Jan H. ; Willis, Claire ; Thorrold, Simon R. ; Llopiz, Joel K. ; Rotjan, Randi
    The Phoenix Islands Protected Area (PIPA), one of the world’s largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015–2017 and using a biological-physical model to estimate spawning locations for collected larvae. Temperature and chlorophyll conditions varied markedly due to observed ENSO states: El Niño (2015) and neutral (2016–2017). However, larval tuna distributions were similar amongst years. Generally, skipjack larvae were patchy and more abundant near PIPA’s northeast corner, while Thunnus larvae exhibited lower and more even abundances. Genetic barcoding confirmed the presence of bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna larvae. Model simulations indicated that most of the larvae collected inside PIPA in 2015 were spawned inside, while stronger currents in 2016 moved more larvae across PIPA’s boundaries. Larval distributions and relative spawning output simulations indicated that both focal taxa spawned inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat.