Singh Hanumant

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 20 of 23
  • Article
    A crab swarm at an ecological hotspot : patchiness and population density from AUV observations at a coastal, tropical seamount
    (PeerJ, 2016-04-12) Pineda, Jesus ; Cho, Walter W. ; Starczak, Victoria R. ; Govindarajan, Annette F. ; Guzman, Hector M. ; Girdhar, Yogesh ; Holleman, Rusty C. ; Churchill, James H. ; Singh, Hanumant ; Ralston, David K.
    A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
  • Article
    Detection of unanticipated faults for autonomous underwater vehicles using online topic models
    (John Wiley & Sons, 2017-12-26) Raanan, Ben-Yair ; Bellingham, James G. ; Zhang, Yanwu ; Kemp, Mathieu ; Kieft, Brian ; Singh, Hanumant ; Girdhar, Yogesh
    For robots to succeed in complex missions, they must be reliable in the face of subsystem failures and environmental challenges. In this paper, we focus on autonomous underwater vehicle (AUV) autonomy as it pertains to self‐perception and health monitoring, and we argue that automatic classification of state‐sensor data represents an important enabling capability. We apply an online Bayesian nonparametric topic modeling technique to AUV sensor data in order to automatically characterize its performance patterns, then demonstrate how in combination with operator‐supplied semantic labels these patterns can be used for fault detection and diagnosis by means of a nearest‐neighbor classifier. The method is evaluated using data collected by the Monterey Bay Aquarium Research Institute's Tethys long‐range AUV in three separate field deployments. Our results show that the proposed method is able to accurately identify and characterize patterns that correspond to various states of the AUV, and classify faults at a high rate of correct detection with a very low false detection rate.
  • Article
    Detection and quantification of oil under sea ice : the view from below
    (Elsevier, 2014-08-21) Wilkinson, Jeremy P. ; Boyd, Tim ; Hagen, Bernard ; Maksym, Ted ; Pegau, Scott ; Roman, Christopher N. ; Singh, Hanumant ; Zabilansky, Leonard
    Traditional measures for detecting oil spills in the open-ocean are both difficult to apply and less effective in ice-covered seas. In view of the increasing levels of commercial activity in the Arctic, there is a growing gap between the potential need to respond to an oil spill in Arctic ice-covered waters and the capability to do so. In particular, there is no robust operational capability to remotely locate oil spilt under or encapsulated within sea ice. To date, most research approaches the problem from on or above the sea ice, and thus they suffer from the need to ‘see’ through the ice and overlying snow. Here we present results from a large-scale tank experiment which demonstrate the detection of oil beneath sea ice, and the quantification of the oil layer thickness is achievable through the combined use of an upward-looking camera and sonar deployed in the water column below a covering of sea ice. This approach using acoustic and visible measurements from below is simple and effective, and potentially transformative with respect to the operational response to oil spills in the Arctic marine environment. These results open up a new direction of research into oil detection in ice-covered seas, as well as describing a new and important role for underwater vehicles as platforms for oil-detecting sensors under Arctic sea ice.
  • Article
    Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
    (European Geosciences Union, 2019-11-08) Mei, M. Jeffrey ; Maksym, Ted ; Weissling, Blake ; Singh, Hanumant
    Satellites have documented variability in sea ice areal extent for decades, but there are significant challenges in obtaining analogous measurements for sea ice thickness data in the Antarctic, primarily due to difficulties in estimating snow cover on sea ice. Sea ice thickness (SIT) can be estimated from snow freeboard measurements, such as those from airborne/satellite lidar, by assuming some snow depth distribution or empirically fitting with limited data from drilled transects from various field studies. Current estimates for large-scale Antarctic SIT have errors as high as ∼50 %, and simple statistical models of small-scale mean thickness have similarly high errors. Averaging measurements over hundreds of meters can improve the model fits to existing data, though these results do not necessarily generalize to other floes. At present, we do not have algorithms that accurately estimate SIT at high resolutions. We use a convolutional neural network with laser altimetry profiles of sea ice surfaces at 0.2 m resolution to show that it is possible to estimate SIT at 20 m resolution with better accuracy and generalization than current methods (mean relative errors ∼15 %). Moreover, the neural network does not require specification of snow depth or density, which increases its potential applications to other lidar datasets. The learned features appear to correspond to basic morphological features, and these features appear to be common to other floes with the same climatology. This suggests that there is a relationship between the surface morphology and the ice thickness. The model has a mean relative error of 20 % when applied to a new floe from the region and season. This method may be extended to lower-resolution, larger-footprint data such as such as Operation IceBridge, and it suggests a possible avenue to reduce errors in satellite estimates of Antarctic SIT from ICESat-2 over current methods, especially at smaller scales.
  • Preprint
    Toward extraplanetary under-ice exploration : robotic steps in the Arctic
    ( 2009-01-12) Kunz, Clayton G. ; Murphy, Christopher A. ; Singh, Hanumant ; Pontbriand, Claire W. ; Sohn, Robert A. ; Singh, Sandipa ; Sato, Taichi ; Roman, Christopher N. ; Nakamura, Ko-ichi ; Jakuba, Michael V. ; Eustice, Ryan M. ; Camilli, Richard ; Bailey, John
    This paper describes the design and use of two new autonomous underwater vehicles, Jaguar and Puma, which were deployed in the summer of 2007 at sites at 85°N latitude in the ice-covered Arctic Ocean to search for hydrothermal vents. These robots are the first to be deployed and recovered through ice to the deep ocean (> 3500m) for scientific research. We examine the mechanical design, software architecture, navigation considerations, sensor suite and issues with deployment and recovery in the ice based on the missions they carried out. Successful recoveries of vehicles deployed under the ice requires two-way acoustic communication, flexible navigation strategies, redundant localization hardware, and software that can cope with several different kinds of failure. The ability to direct an AUV via the low bandwidth and intermittently functional acoustic channel, is of particular importance. Based on our experiences, we also discuss the applicability of the technology and operational approaches of this expedition to the exploration of Jupiter's ice-covered moon Europa.
  • Thesis
    An entropic framework for AUV sensor modelling
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-05-25) Singh, Hanumant
    This thesis examines the general task of active sensing by defining a measure of efficiency for sensing in a particular environment. We focus on fine-scale acoustic mapping from an autonomous underwater vehicle (AUV). The constraints on imaging underwater - vehicle power, vehicle hydrodynamics, computational and telemetry requirements, and typical navigational and attitudinal uncertainties along with the underlying physics of the acoustic sensing modality- are considered in defining an entropic measure of sensor efficiency. 675-kHz pencil-beam sonar data acquired using the JASON remotely operated vehicle in a challenging shallow water environment and 200-kHz echo-sounder data acquired using the ABE AUV are used to demonstrate the utility of the en tropic framework. We show the utility of an entropic framework for the following: (i) Optimizing the speed of the AUV for maximizing the information gathered with a particular sensor. (ii) the rate of convergence and the stability of our mapping efforts in the face of typical uncertainties in navigation and attitude; (iii) as a methodology for actual sensor deployment and use on a real vehicle; and (iv) in tasks such as post-mission analysis for applications such as change detection and path planning for subsequent missions.
  • Article
    Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
    (European Geosciences Union, 2019-03-15) Wagner, Till ; Straneo, Fiamma ; Richards, Clark G. ; Slater, Donald A. ; Stevens, Laura A. ; Das, Sarah B. ; Singh, Hanumant
    The frontal flux balance of a medium-sized tidewater glacier in western Greenland in the summer is assessed by quantifying the individual components (ice flux, retreat, calving, and submarine melting) through a combination of data and models. Ice flux and retreat are obtained from satellite data. Submarine melting is derived using a high-resolution ocean model informed by near-ice observations, and calving is estimated using a record of calving events along the ice front. All terms exhibit large spatial variability along the ∼5 km wide ice front. It is found that submarine melting accounts for much of the frontal ablation in small regions where two subglacial discharge plumes emerge at the ice front. Away from the subglacial plumes, the estimated melting accounts for a small fraction of frontal ablation. Glacier-wide, these estimates suggest that mass loss is largely controlled by calving. This result, however, is at odds with the limited presence of icebergs at this calving front – suggesting that melt rates in regions outside of the subglacial plumes may be underestimated. Finally, we argue that localized melt incisions into the glacier front can be significant drivers of calving. Our results suggest a complex interplay of melting and calving marked by high spatial variability along the glacier front.
  • Preprint
    Map building fusing acoustic and visual information using autonomous underwater vehicles
    ( 2012-10) Kunz, Clayton G. ; Singh, Hanumant
    We present a system for automatically building 3-D maps of underwater terrain fusing visual data from a single camera with range data from multibeam sonar. The six-degree of freedom location of the camera relative to the navigation frame is derived as part of the mapping process, as are the attitude offsets of the multibeam head and the on-board velocity sensor. The system uses pose graph optimization and the square root information smoothing and mapping framework to simultaneously solve for the robot’s trajectory, the map, and the camera location in the robot’s frame. Matched visual features are treated within the pose graph as images of 3-D landmarks, while multibeam bathymetry submap matches are used to impose relative pose constraints linking robot poses from distinct tracklines of the dive trajectory. The navigation and mapping system presented works under a variety of deployment scenarios, on robots with diverse sensor suites. Results of using the system to map the structure and appearance of a section of coral reef are presented using data acquired by the Seabed autonomous underwater vehicle.
  • Preprint
    Characterizing the deep insular shelf coral reef habitat of the Hind Bank marine conservation district (US Virgin Islands) using the Seabed autonomous underwater vehicle
    ( 2005-10-26) Armstrong, Roy A. ; Singh, Hanumant ; Torres, Juan ; Nemeth, Richard S. ; Can, Ali ; Roman, Christopher N. ; Eustice, Ryan M. ; Riggs, Lauren ; Garcia-Moliner, Graciela
    The benthic communities of the deep insular shelf at the Hind Bank Marine Conservation District (MCD), an important spawning grouper aggregation site, were studied with the Seabed autonomous underwater vehicle (AUV) at depths between 32 to 54 m. Four digital phototransects provided data on benthic species composition and abundance of the insular shelf off St. Thomas, U.S. Virgin Islands. Within the western side of the MCD, well developed coral reefs with 43% mean living coral cover were found. The Montastrea annularis complex was dominant at all four sites between 33 to 47 m, the depth range where reefs were present. Maximum coral cover found was 70% at depths of 38 to 40 m. Quantitative determinations of sessile-benthic populations, as well as the presence of motile-megabenthic invertebrates and algae were obtained. The Seabed AUV provided new quantitative and descriptive information of a unique coral reef habitat found within this deeper insular shelf area.
  • Article
    Applications of geo-referenced underwater photo mosaics in marine biology and archaeology
    (Oceanography Society, 2007-12) Ludvigsen, Martin ; Sortland, Bjorn ; Johnsen, Geir ; Singh, Hanumant
    In deep water, below the photic zone, still and video imaging of the seabed requires artificial lighting. Light absorption and backscatter caused by typical seawater components, such as dissolved organic matter, plankton, and inorganic particles, often limit the artificially lit area to a few square meters. To obtain high-resolution photographic data of larger seabed areas, a series of images can be compiled into a photo mosaic. Image mosaics are easier to interpret, communicate, and exhibit than video footage or a series of images, because the individual image frames in a photo mosaic are naturally represented in a spatial context.
  • Preprint
    Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean
    ( 2007-11-26) Sohn, Robert A. ; Willis, Claire ; Humphris, Susan E. ; Shank, Timothy M. ; Singh, Hanumant ; Edmonds, Henrietta N. ; Kunz, Clayton G. ; Hedman, Ulf ; Helmke, Elisabeth ; Jakuba, Michael V. ; Liljebladh, Bengt ; Linder, Julia ; Murphy, Christopher A. ; Nakamura, Ko-ichi ; Sato, Taichi ; Schlindwein, Vera ; Stranne, Christian ; Tausenfreund, Upchurch ; Winsor, Peter ; Jakobsson, Martin ; Soule, Samuel A.
    Roughly 60% of the Earth’s outer surface is comprised of oceanic crust formed by volcanic processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic terrain has been visually surveyed and/or sampled, the available evidence suggests that explosive eruptions are rare on MORs, particularly at depths below the critical point for steam (3000 m). A pyroclastic deposit has never been observed on the seafloor below 3000 m, presumably because the volatile content of mid-ocean ridge basalts is generally too low to produce the gas fractions required to fragment a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel Ridge in the Arctic Basin at 85°E, to acquire the first-ever photographic images of ‘zero-age’ volcanic terrain on this remote, ice-covered MOR. Our imagery reveals that the axial valley at 4000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large area greater than 10 km2. At least 13.5 wt% CO2 is required to fragment magma at these depths, which is ~10x greater than the highest values measured to-date in a MOR basalt. These observations raise important questions regarding the accumulation and discharge of magmatic volatiles at ultra-slow spreading rates on the Gakkel Ridge (6- 14 mm yr-1, full-rate), and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global MOR volcanic system.
  • Preprint
    Long-baseline acoustic navigation for under-ice autonomous underwater vehicle operations
    ( 2008-05-19) Jakuba, Michael V. ; Roman, Christopher N. ; Singh, Hanumant ; Murphy, Christopher A. ; Kunz, Clayton G. ; Willis, Claire ; Sato, Taichi ; Sohn, Robert A.
    The recent Arctic GAkkel Vents Expedition (AGAVE) to the Arctic Ocean’s Gakkel Ridge (July/August 2007) aboard the Swedish ice-breaker I/B Oden employed autonomous underwater vehicles (AUVs) for water-column and ocean bottom surveys. These surveys were unique among AUV operations to date in requiring georeferenced navigation in proximity to the seafloor beneath permanent and moving ice cover. We report results for long-baseline (LBL) acoustic navigation during autonomous under-ice surveys near the seafloor and adaptation of the LBL concept for several typical operational situations including navigation in proximity to the ship during vehicle recoveries. Fixed seafloor transponders were free-fall deployed from the ship for deep positioning. The ship’s helicopter collected acoustic travel times from several locations to geo-reference the transponders’ locations, subject to the availability of openings in the ice. Two shallow beacons suspended from the ship provided near-surface spherical navigation in ship-relative coordinates. During routine recoveries, we used this system to navigate the vehicles into open water near the ship before commanding them to surface. In cases where a vehicle was impaired, its position was still determined acoustically through some combination of its acoustic modem, the fixed seafloor transponders, the ship-deployed transponders, and an on-board backup relay transponder. The techniques employed included ranging adapted for a moving origin and hyperbolic navigation.
  • Preprint
    Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break
    ( 2007-11) Newman, Kori R. ; Cormier, Marie-Helene ; Weissel, Jeffrey K. ; Driscoll, Neal W. ; Kastner, Miriam ; Solomon, Evan A. ; Robertson, Gretchen ; Hill, Jenna C. ; Singh, Hanumant ; Camilli, Richard ; Eustice, Ryan M.
    Detailed near-bottom investigation of a series of giant, kilometer scale, elongate pockmarks along the edge of the mid-Atlantic continental shelf confirms that methane is actively venting at the site. Dissolved methane concentrations, which were measured with a commercially available methane sensor (METS) designed by Franatech GmbH mounted on an autonomous underwater vehicle (AUV), are as high as 100 nM. These values are well above expected background levels (1-4 nM) for the open ocean. Sediment pore water geochemistry gives further evidence of methane advection through the seafloor. Isotopically light carbon in the dissolved methane samples indicates a primarily biogenic source. The spatial distribution of the near-bottom methane anomalies (concentrations above open ocean background), combined with water column salinity and temperature vertical profiles, indicate that methane-rich water is not present across the entire width of the pockmarks, but is laterally restricted to their edges. We suggest that venting is primarily along the top of the pockmark walls with some advection and dispersion due to local currents. The highest methane concentrations observed with the METS sensor occur at a small, circular pockmark at the southern end of the study area. This observation is compatible with a scenario where the larger, elongate pockmarks evolve through coalescing smaller pockmarks.
  • Article
    Climate change and the threat of novel marine predators in Antarctica
    (John Wiley & Sons, 2017-11-30) Smith, Kathryn E. ; Aronson, Richard B. ; Steffel, Brittan V. ; Amsler, Margaret O. ; Thatje, Sven ; Singh, Hanumant ; Anderson, Jeff ; Brothers, Cecilia ; Brown, Alastair ; Ellis, Daniel S. ; Havenhand, Jon N. ; James, William R. ; Moksnes, Per-Olav ; Randolph, Allison W. ; Sayre-McCord, Thomas ; McClintock, James B.
    Historically low temperatures have severely limited skeleton-breaking predation on the Antarctic shelf, facilitating the evolution of a benthic fauna poorly defended against durophagy. Now, rapid warming of the Southern Ocean is restructuring Antarctic marine ecosystems as conditions become favorable for range expansions. Populations of the lithodid crab Paralomis birsteini currently inhabit some areas of the continental slope off Antarctica. They could potentially expand along the slope and upward to the outer continental shelf, where temperatures are no longer prohibitively low. We identified two sites inhabited by different densities of lithodids in the slope environment along the western Antarctic Peninsula. Analysis of the gut contents of P. birsteini trapped on the slope revealed them to be opportunistic invertivores. The abundances of three commonly eaten, eurybathic taxa—ophiuroids, echinoids, and gastropods—were negatively associated with P. birsteini off Marguerite Bay, where lithodid densities averaged 4280 ind/km2 at depths of 1100–1499 m (range 3440–5010 ind/km2), but not off Anvers Island, where lithodid densities were lower, averaging 2060 ind/km2 at these depths (range 660–3270 ind/km2). Higher abundances of lithodids appear to exert a negative effect on invertebrate distribution on the slope. Lateral or vertical range expansions of P. birsteini at sufficient densities could substantially reduce populations of their benthic prey off Antarctica, potentially exacerbating the direct impacts of rising temperatures on the distribution and diversity of the contemporary shelf benthos.
  • Article
    Covering behavior of deep-water echinoids in Antarctica : possible response to predatory king crabs
    (Inter-Research, 2016-07-14) Brothers, Cecilia ; Smith, Kathryn E. ; Amsler, Margaret O. ; Aronson, Richard B. ; Singh, Hanumant ; McClintock, James B.
    Covering behavior refers to the propensity of echinoids (Echinoidea) to lift materials from the surrounding environment onto their aboral surfaces using their tube feet and spines. This behavior has been widely documented in regular echinoids from a variety of well-lit, shallow-marine habitats. Covering behavior in the deep sea, however, is rarely observed, and the functional significance of covering when it does occur remains speculative. During a photographic survey of the seafloor off Anvers Island and Marguerite Bay along the western Antarctic Peninsula, we imaged 11 benthic transects at depths ranging from 390 to 2100 m. We recorded the number of echinoid species, incidence of covering behavior, types of materials used for covering, potential predators of echinoids, and potential prey items for predators. The echinoid Sterechinus spp. was found at all depths, and the percentage of individuals exhibiting covering behavior increased with depth between 390 and 1500 m. There was a significant positive correlation between the incidence of covering behavior in Sterechinus spp. and the density of king crabs (Anomura: Lithodidae), crushing predators that may be expanding their bathymetric range up the Antarctic continental slope as a consequence of ongoing climatic warming. In contrast, covering behavior was not positively correlated with the densities of non-crab predators, the total densities of predators, or the availability of prey. Our results document rarely observed covering behavior in echinoids living in the deep sea and suggest that covering could be a behavioral response to predation pressure by king crabs.
  • Article
    Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot
    (Nature Publishing Group, 2018-03-02) Borowicz, Alex ; McDowall, Philip ; Youngflesh, Casey ; Sayre-McCord, Thomas ; Clucas, Gemma V. ; Herman, Rachael ; Forrest, Steven ; Rider, Melissa ; Schwaller, Mathew ; Hart, Tom ; Jenouvrier, Stephanie ; Polito, Michael J. ; Singh, Hanumant ; Lynch, Heather J.
    Despite concerted international effort to track and interpret shifts in the abundance and distribution of Adélie penguins, large populations continue to be identified. Here we report on a major hotspot of Adélie penguin abundance identified in the Danger Islands off the northern tip of the Antarctic Peninsula (AP). We present the first complete census of Pygoscelis spp. penguins in the Danger Islands, estimated from a multi-modal survey consisting of direct ground counts and computer-automated counts of unmanned aerial vehicle (UAV) imagery. Our survey reveals that the Danger Islands host 751,527 pairs of Adélie penguins, more than the rest of AP region combined, and include the third and fourth largest Adélie penguin colonies in the world. Our results validate the use of Landsat medium-resolution satellite imagery for the detection of new or unknown penguin colonies and highlight the utility of combining satellite imagery with ground and UAV surveys. The Danger Islands appear to have avoided recent declines documented on the Western AP and, because they are large and likely to remain an important hotspot for avian abundance under projected climate change, deserve special consideration in the negotiation and design of Marine Protected Areas in the region.
  • Article
    The 2005 Chios ancient shipwreck survey : new methods for underwater archaeology
    (American School of Classical Studies at Athens, 2009-04) Foley, Brendan P. ; Dellaporta, Katerina ; Sakellariou, Dimitris ; Bingham, Brian S. ; Camilli, Richard ; Eustice, Ryan M. ; Evagelistis, Dionysis ; Ferrini, Vicki L. ; Katsaros, Kostas ; Kourkoumelis, Dimitris ; Mallios, Angelos ; Micha, Paraskevi ; Mindell, David A. ; Roman, Christopher N. ; Singh, Hanumant ; Switzer, David S. ; Theodoulou, Theotokis
    In 2005 a Greek and American interdisciplinary team investigated two shipwrecks off the coast of Chios dating to the 4th-century b.c. and the 2nd/1st century. The project pioneered archaeological methods of precision acoustic, digital image, and chemical survey using an autonomous underwater vehicle (AUV) and in-situ sensors, increasing the speed of data acquisition while decreasing costs. The AUV recorded data revealing the physical dimensions, age, cargo, and preservation of the wrecks. The earlier wreck contained more than 350 amphoras, predominantly of Chian type, while the Hellenistic wreck contained about 40 Dressel 1C amphoras. Molecular biological analysis of two amphoras from the 4th-century wreck revealed ancient DNA of olive, oregano, and possibly mastic, part of a cargo outbound from Chios.
  • Technical Report
    FISH_ROCK : a tool for identifying and counting benthic organisms in bottom photographs
    (Woods Hole Oceanographic Institution, 2006-01) Ferrini, Vicki L. ; Singh, Hanumant
    Recent advances in underwater robotics and imaging technology now enable the rapid acquisition of large datasets of near-bottom high-resolution digital imagery. These images provide the potential for developing a non-invasive technique for fisheries data acquisition that reveals the organisms in their natural habitat and can be used to identify important habitat characteristics. Using these large datasets effectively, however, requires the development of computer-based techniques that increase the efficiency of data analysis. This document describes one such tool, FISH_ROCK, which was developed for a group of fisheries researchers using the SeaBED AUV during a research cruise in October 2005. FISH_ROCK is a graphical user interface (GUI) that is executed within Matlab, and allows users digitally generate a database that includes organism identification, quantity, size and distribution as well as details about their habitat. Further development of this GUI will enable its use in different oceanographic environments including the deep sea, and will include modules that perform data analysis.
  • Article
    Exactly sparse delayed-state filters for view-based SLAM
    (IEEE, 2006-12) Eustice, Ryan M. ; Singh, Hanumant ; Leonard, John J.
    This paper reports the novel insight that the simultaneous localization and mapping (SLAM) information matrix is exactly sparse in a delayed-state framework. Such a framework is used in view-based representations of the environment that rely upon scan-matching raw sensor data to obtain virtual observations of robot motion with respect to a place it has previously been. The exact sparseness of the delayed-state information matrix is in contrast to other recent feature-based SLAM information algorithms, such as sparse extended information filter or thin junction-tree filter, since these methods have to make approximations in order to force the feature-based SLAM information matrix to be sparse. The benefit of the exact sparsity of the delayed-state framework is that it allows one to take advantage of the information space parameterization without incurring any sparse approximation error. Therefore, it can produce equivalent results to the full-covariance solution. The approach is validated experimentally using monocular imagery for two datasets: a test-tank experiment with ground truth, and a remotely operated vehicle survey of the RMS Titanic.
  • Article
    Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord
    (John Wiley & Sons, 2016-12-15) Mankoff, Kenneth D. ; Straneo, Fiamma ; Cenedese, Claudia ; Das, Sarah B. ; Richards, Clark G. ; Singh, Hanumant
    Discharge of surface-derived meltwater at the submerged base of Greenland's marine-terminating glaciers creates subglacial discharge plumes that rise along the glacier/ocean interface. These plumes impact submarine melting, calving, and fjord circulation. Observations of plume properties and dynamics are challenging due to their proximity to the calving edge of glaciers. Therefore, to date information on these plumes has been largely derived from models. Here we present temperature, salinity, and velocity data collected in a plume that surfaced at the edge of Saqqarliup Sermia, a midsized Greenlandic glacier. The plume is associated with a narrow core of rising waters approximately 20 m in diameter at the ice edge that spreads to a 200 m by 300 m plume pool as it reaches the surface, before descending to its equilibrium depth. Volume flux estimates indicate that the plume is primarily driven by subglacial discharge and that this has been diluted in a ratio of 1:10 by the time the plume reaches the surface. While highly uncertain, meltwater fluxes are likely 2 orders of magnitude smaller than the subglacial discharge flux. The overall plume characteristics agree with those predicted by theoretical plume models for a convection-driven plume with limited influence from submarine melting.