Moat
Bengamin I.
Moat
Bengamin I.
No Thumbnail Available
5 results
Search Results
Now showing
1 - 5 of 5
-
ArticleObservation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic(Elsevier, 2021-07-06) Li, Feili ; Lozier, M. Susan ; Holliday, Naomi Penny ; Johns, William E. ; Le Bras, Isabela A. ; Moat, Bengamin I. ; Cunningham, Stuart A. ; de Jong, Marieke FemkeContinuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period.
-
Book chapterGlobal Oceans [in “State of the Climate in 2020”](American Meteorological Society, 2021-08-01) Johnson, Gregory C. ; Lumpkin, Rick ; Alin, Simone R. ; Amaya, Dillon J. ; Baringer, Molly O. ; Boyer, Tim ; Brandt, Peter ; Carter, Brendan ; Cetinić, Ivona ; Chambers, Don P. ; Cheng, Lijing ; Collins, Andrew U. ; Cosca, Cathy ; Domingues, Ricardo ; Dong, Shenfu ; Feely, Richard A. ; Frajka-Williams, Eleanor E. ; Franz, Bryan A. ; Gilson, John ; Goni, Gustavo J. ; Hamlington, Benjamin D. ; Herrford, Josefine ; Hu, Zeng-Zhen ; Huang, Boyin ; Ishii, Masayoshi ; Jevrejeva, Svetlana ; Kennedy, John J. ; Kersalé, Marion ; Killick, Rachel E. ; Landschützer, Peter ; Lankhorst, Matthias ; Leuliette, Eric ; Locarnini, Ricardo ; Lyman, John ; Marra, John F. ; Meinen, Christopher S. ; Merrifield, Mark ; Mitchum, Gary ; Moat, Bengamin I. ; Nerem, R. Steven ; Perez, Renellys ; Purkey, Sarah G. ; Reagan, James ; Sanchez-Franks, Alejandra ; Scannell, Hillary A. ; Schmid, Claudia ; Scott, Joel P. ; Siegel, David A. ; Smeed, David A. ; Stackhouse, Paul W. ; Sweet, William V. ; Thompson, Philip R. ; Trinanes, Joaquin ; Volkov, Denis L. ; Wanninkhof, Rik ; Weller, Robert A. ; Wen, Caihong ; Westberry, Toby K. ; Widlansky, Matthew J. ; Wilber, Anne C. ; Yu, Lisan ; Zhang, Huai-MinThis chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
-
ArticleSupplement to physical exchanges at the air–sea interface : UK–SOLAS field measurements(American Meteorological Society, 2009-05) Brooks, Ian M. ; Yelland, Margaret J. ; Upstill-Goddard, Robert C. ; Nightingale, Philip D. ; Archer, Stephen D. ; D'Asaro, Eric A. ; Beale, Rachael ; Beatty, Cory ; Blomquist, Byron ; Bloom, A. Anthony ; Brooks, Barbara J. ; Cluderay, John ; Coles, David ; Dacey, John W. H. ; DeGrandpre, Michael D. ; Dixon, Jo ; Drennan, William M. ; Gabriele, Joseph ; Goldson, Laura E. ; Hardman-Mountford, Nick ; Hill, Martin K. ; Horn, Matt ; Hsueh, Ping-Chang ; Huebert, Barry ; De Leeuw, Gerrit ; Leighton, Timothy G. ; Liddicoat, Malcolm ; Lingard, Justin J. N. ; McNeil, Craig L. ; McQuaid, James B. ; Moat, Bengamin I. ; Moore, Gerald ; Neill, Craig L. ; Norris, Sarah J. ; O'Doherty, Simon ; Pascal, Robin W. ; Prytherch, John ; Rebozo, Mike ; Sahlee, Erik ; Salter, Matt ; Schuster, Ute ; Skjelvan, Ingunn ; Slagter, Hans ; Smith, Michael H. ; Smith, Paul D. ; Srokosz, Meric ; Stephens, John A. ; Taylor, Peter K. ; Telszewski, Maciej ; Walsh, Roisin ; Ward, Brian ; Woolf, David K. ; Young, Dickon ; Zemmelink, Hendrik J.
-
ArticlePhysical exchanges at the air–sea interface : UK–SOLAS field measurements(American Meteorological Society, 2009-05) Brooks, Ian M. ; Bloom, A. Anthony ; Brooks, Barbara J. ; Lingard, Justin J. N. ; McQuaid, James B. ; Norris, Sarah J. ; Smith, Michael H. ; Smith, Paul D. ; Yelland, Margaret J. ; Moat, Bengamin I. ; Pascal, Robin W. ; Prytherch, John ; Srokosz, Meric ; Taylor, Peter K. ; Upstill-Goddard, Robert C. ; Salter, Matt ; Nightingale, Philip D. ; Archer, Stephen D. ; Beale, Rachael ; Dixon, Jo ; Goldson, Laura E. ; Hardman-Mountford, Nick ; Liddicoat, Malcolm ; Moore, Gerald ; Stephens, John A. ; D'Asaro, Eric A. ; McNeil, Craig L. ; Beatty, Cory ; DeGrandpre, Michael D. ; Blomquist, Byron ; Huebert, Barry ; Cluderay, John ; Zemmelink, Hendrik J. ; Coles, David ; Hsueh, Ping-Chang ; Leighton, Timothy G. ; Dacey, John W. H. ; Drennan, William M. ; Rebozo, Mike ; Sahlee, Erik ; Gabriele, Joseph ; Hill, Martin K. ; Horn, Matt ; De Leeuw, Gerrit ; Neill, Craig ; Skjelvan, Ingunn ; O'Doherty, Simon ; Walsh, Roisin ; Young, Dickon ; Schuster, Ute ; Telszewski, Maciej ; Slagter, Hans ; Ward, Brian ; Woolf, David K.As part of the U.K. contribution to the international Surface Ocean–Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosol-size spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.
-
ArticleAtlantic meridional overturning circulation: Observed transport and variability(Frontiers Media, 2019-06-07) Frajka-Williams, Eleanor ; Ansorge, Isabelle ; Baehr, Johanna ; Bryden, Harry L. ; Chidichimo, Maria Paz ; Cunningham, Stuart A. ; Danabasoglu, Gokhan ; Dong, Shenfu ; Donohue, Kathleen A. ; Elipot, Shane ; Heimbach, Patrick ; Holliday, Naomi Penny ; Hummels, Rebecca ; Jackson, Laura C. ; Karstensen, Johannes ; Lankhorst, Matthias ; Le Bras, Isabela A. ; Lozier, M. Susan ; McDonagh, Elaine L. ; Meinen, Christopher S. ; Mercier, Herlé ; Moat, Bengamin I. ; Perez, Renellys ; Piecuch, Christopher G. ; Rhein, Monika ; Srokosz, Meric ; Trenberth, Kevin E. ; Bacon, Sheldon ; Forget, Gael ; Goni, Gustavo J. ; Kieke, Dagmar ; Koelling, Jannes ; Lamont, Tarron ; McCarthy, Gerard D. ; Mertens, Christian ; Send, Uwe ; Smeed, David A. ; Speich, Sabrina ; van den Berg, Marcel ; Volkov, Denis L. ; Wilson, Christopher G.The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.