Breier Crystaline F.

No Thumbnail Available
Last Name
Breier
First Name
Crystaline F.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-03-28) Charette, Matthew A. ; Breier, Crystaline F. ; Henderson, Paul B. ; Pike, Steven M. ; Rypina, Irina I. ; Jayne, Steven R. ; Buesseler, Ken O.
    Radium has four naturally occurring isotopes that have proven useful in constraining water mass source, age, and mixing rates in the coastal and open ocean. In this study, we used radium isotopes to determine the fate and flux of runoff-derived cesium from the Fukushima Dai-ichi Nuclear Power Plant (FNPP). During a June 2011 cruise, the highest cesium (Cs) concentrations were found along the eastern shelf of northern Japan, from Fukushima south, to the edge of the Kuroshio Current, and in an eddy ~ 130 km from the FNPP site. Locations with the highest cesium also had some of the highest radium activities, suggesting much of the direct ocean discharges of Cs remained in the coastal zone 2–3 months after the accident. We used a short-lived Ra isotope (223Ra, t1/2 = 11.4 d) to derive an average water mass age (Tr) in the coastal zone of 32 days. To ground-truth the Ra age model, we conducted a direct, station-by-station comparison of water mass ages with a numerical oceanographic model and found them to be in excellent agreement (model avg. Tr = 27 days). From these independent Tr values and the inventory of Cs within the water column at the time of our cruise, we were able to calculate an offshore 134Cs flux of 3.9–4.6 × 1013 Bq d−1. Radium-228 (t1/2 = 5.75 yr) was used to derive a vertical eddy diffusivity (Kz) of 0.7 m2 d−1 (0.1 cm2 s−1); from this Kz and 134Cs inventory, we estimated a 134Cs flux across the pycnocline of 1.8 × 104 Bq d−1 for the same time period. On average, our results show that horizontal mixing loss of Cs from the coastal zone was ~ 109 greater than vertical exchange below the surface mixed layer. Finally, a mixing/dilution model that utilized our Ra-based and oceanographic model water mass ages produced a direct ocean discharge of 134Cs from the FNPP of 11–16 PBq at the time of the peak release in early April 2011. Our results can be used to calculate discharge of other water-soluble radionuclides that were released to the ocean directly from the Fukushima NPP.
  • Article
    Fukushima-derived radionuclides in the ocean and biota off Japan
    (National Academy of Sciences, 2012-04-02) Buesseler, Ken O. ; Jayne, Steven R. ; Fisher, Nicholas S. ; Rypina, Irina I. ; Baumann, Hannes ; Baumann, Zofia ; Breier, Crystaline F. ; Douglass, Elizabeth M. ; George, Jennifer ; Macdonald, Alison M. ; Miyamoto, Hiroomi ; Nishikawa, Jun ; Pike, Steven M. ; Yoshida, Sachiko
  • Preprint
    Fukushima 137Cs at the base of planktonic food webs off Japan
    ( 2015-09-18) Baumann, Zofia ; Fisher, Nicholas S. ; Gobler, Christopher J. ; Buesseler, Ken O. ; George, J. A. ; Breier, Crystaline F. ; Nishikawa, Jun
    The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of SPM (suspended particulate matter) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (~102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.