Costidis
Alexander M.
Costidis
Alexander M.
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleCriteria and case definitions for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma(Inter-Research, 2013-04-11) Moore, Michael J. ; van der Hoop, Julie ; Barco, Susan G. ; Costidis, Alexander M. ; Gulland, Frances M. ; Jepson, Paul D. ; Moore, Kathleen M. T. ; Raverty, Stephen A. ; McLellan, William A.Post-mortem examination of dead and live stranded beach-cast pinnipeds and cetaceans for determination of a cause of death provides valuable information for the management, mitigation and prosecution of unintentional and sometimes malicious human impacts, such as vessel collision, fishing gear entanglement and gunshot. Delayed discovery, inaccessibility, logistics, human safety concerns, and weather make these events challenging. Over the past 3 decades, in response to public concern and federal and state or provincial regulations mandating such investigations to inform mitigation efforts, there has been an increasing effort to objectively and systematically investigate these strandings from a diagnostic and forensic perspective. This Theme Section provides basic investigative methods, and case definitions for each of the more commonly recognized case presentations of human interactions in pinnipeds and cetaceans. Wild animals are often adversely affected by factors such as parasitism, anthropogenic contaminants, biotoxins, subclinical microbial infections and competing habitat uses, such as prey depletion and elevated background and episodic noise. Understanding the potential contribution of these subclinical factors in predisposing or contributing to a particular case of trauma of human origin is hampered, especially where putrefaction is significant and resources as well as expertise are limited. These case criteria descriptions attempt to acknowledge those confounding factors to enable an appreciation of the significance of the observed human-derived trauma in that broader context where possible.
-
ArticleRope trauma, sedation, disentanglement, and monitoring-tag associated lesions in a terminally entangled North Atlantic right whale (Eubalaena glacialis)(John Wiley & Sons, 2012-08-28) Moore, Michael J. ; Andrews, Russel ; Austin, Trevor ; Bailey, James ; Costidis, Alexander M. ; George, Clay ; Jackson, Katharine ; Pitchford, Thomas ; Landry, Scott ; Ligon, Allan ; McLellan, William A. ; Morin, David ; Smith, Jamison ; Rotstein, David S. ; Rowles, Teresa K. ; Slay, Christopher K. ; Walsh, MichaelA chronically entangled North Atlantic right whale, with consequent emaciation was sedated, disentangled to the extent possible, administered antibiotics, and satellite tag tracked for six subsequent days. It was found dead 11 d after the tag ceased transmission. Chronic constrictive deep rope lacerations and emaciation were found to be the proximate cause of death, which may have ultimately involved shark predation. A broadhead cutter and a spring-loaded knife used for disentanglement were found to induce moderate wounds to the skin and blubber. The telemetry tag, with two barbed shafts partially penetrating the blubber was shed, leaving barbs embedded with localized histological reaction. One of four darts administered shed the barrel, but the needle was found postmortem in the whale with an 80º bend at the blubber-muscle interface. This bend occurred due to epaxial muscle movement relative to the overlying blubber, with resultant necrosis and cavitation of underlying muscle. This suggests that rigid, implanted devices that span the cetacean blubber muscle interface, where the muscle moves relative to the blubber, could have secondary health impacts. Thus we encourage efforts to develop new tag telemetry systems that do not penetrate the subdermal sheath, but still remain attached for many months.
-
PreprintA comparative analysis of marine mammal tracheas( 2013-11) Moore, Colby D. ; Moore, Michael J. ; Trumble, Stephen J. ; Niemeyer, Misty E. ; Lentell, Betty J. ; McLellan, William A. ; Costidis, Alexander M. ; Fahlman, AndreasIn 1940, Scholander suggested that stiffened upper airways remained open and received air from highly compressible alveoli during marine mammal diving. There are little data available on the structural and functional adaptations of the marine mammal respiratory system. The aim of this research was to investigate the anatomical (gross) and structural (compliance) characteristics of excised marine mammal tracheas. Here we defined different types of tracheal structures, categorizing pinniped tracheas by varying degrees of continuity of cartilage (categories 1-4) and cetacean tracheas by varying compliance values (categories 5A and 5B). Some tracheas fell into more than one category, along their length, for example, the harbor seal (Phoca vitulina) demonstrated complete rings cranially, and as the trachea progressed caudally tracheal rings changed morphology. Dolphins and porpoises had less stiff, more compliant spiraling rings while beaked whales had very stiff, less compliant spiraling rings. The pressure-volume (P-V) relationships of isolated tracheas from different species were measured to assess structural differences between species. These findings lend evidence for pressure-induced collapse and re-inflation of lungs, perhaps influencing variability in dive depth or ventilation rates of the species investigated.
-
ArticleDeadly diving? Physiological and behavioural management of decompression stress in diving mammals(Royal Society, 2011-12-21) Hooker, Sascha K. ; Fahlman, Andreas ; Moore, Michael J. ; Aguilar De Soto, Natacha ; Bernaldo de Quiros, Yara ; Brubakk, A. O. ; Costa, Daniel P. ; Costidis, Alexander M. ; Dennison, Sophie ; Falke, K. J. ; Fernandez, Antonio ; Ferrigno, Massimo ; Fitz-Clarke, J. R. ; Garner, Michael M. ; Houser, Dorian S. ; Jepson, Paul D. ; Ketten, Darlene R. ; Kvadsheim, P. H. ; Madsen, Peter T. ; Pollock, N. W. ; Rotstein, David S. ; Rowles, Teresa K. ; Simmons, S. E. ; Van Bonn, William ; Weathersby, P. K. ; Weise, Michael ; Williams, Terrie M. ; Tyack, Peter L.Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.