Williams Clare M.

No Thumbnail Available
Last Name
Williams
First Name
Clare M.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Central Anomaly Magnetization High documentation of crustal accretion along the East Pacific Rise (9°55′–9°25′N)
    (American Geophysical Union, 2008-04-09) Williams, Clare M. ; Tivey, Maurice A. ; Schouten, Hans A. ; Fornari, Daniel J.
    Near-bottom magnetic data collected along the crest of the East Pacific Rise between 9°55′ and 9°25′N identify the Central Anomaly Magnetization High (CAMH), a geomagnetic anomaly modulated by crustal accretionary processes over timescales of ∼104 years. A significant decrease in CAMH amplitude is observed along-axis from north to south, with the steepest gradient between 9°42′ and 9°36′N. The source of this variation is neither a systematic change in geochemistry nor varying paleointensity at the time of lava eruption. Instead, magnetic moment models show that it can be accounted for by an observed ∼50% decrease in seismic Layer 2A thickness along-axis. Layer 2A is assumed to be the extrusive volcanic layer, and we propose that this composes most of the magnetic source layer along the ridge axis. The 9°37′N overlapping spreading center (OSC) is located at the southern end of the steep CAMH gradient, and the 9°42′–9°36′N ridge segment is interpreted to be a transition zone in crustal accretion processes, with robust magmatism north of 9°42′N and relatively low magmatism at present south of 9°36′N. The 9°37′N OSC is also the only bathymetric discontinuity associated with a shift in the CAMH peak, which deviates ∼0.7 km to the west of the axial summit trough, indicating southward migration of the OSC. CAMH boundaries (defined from the maximum gradients) lie within or overlie the neovolcanic zone (NVZ) boundaries throughout our survey area, implying a systematic relationship between recent volcanic activity and CAMH source. Maximum flow distances and minimum lava dip angles are inferred on the basis of the lateral distance between the NVZ and CAMH boundaries. Lava dip angles average ∼14° toward the ridge axis, which agrees well with previous observations and offers a new method for estimating lava dip angles along fast spreading ridges where volcanic sequences are not exposed.
  • Thesis
    Oceanic lithosphere magnetization : marine magnetic investigations of crustal accretion and tectonic processes in mid-ocean ridge environments
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-09) Williams, Clare M.
    The origin of symmetric alternating magnetic polarity stripes on the seafloor is investigated in two marine environments; along the ridge axis of the fast spreading East Pacific Rise (EPR) (9º 25’-9º 55’N) and at Kane Megamullion (KMM) (23º 40’N), near the intersection of the slow-spreading Mid Atlantic Ridge with Kane Transform Fault. Marine magnetic anomalies and magnetic properties of seafloor samples are combined to characterize the magnetic source layer in both locations. The EPR study suggests that along-axis variations in the observed axial magnetic anomaly result from changing source layer thickness alone, consistent with observed changes in seismic Layer 2a. The extrusive basalts of the upper crust therefore constitute the magnetic source layer along the ridge axis and long term crustal accretion patterns are reflected in the appearance of the axial anomaly. At KMM the C2r.2r/C2An.1n (~ 2.581 Ma) polarity reversal boundary cuts through lower crust (gabbro) and upper mantle (serpentinized peridotites) rocks exposed by a detachment fault on the seafloor, indicating that these lithologies can systematically record a magnetic signal. Both lithologies have stable remanent magnetization, capable of contributing to the magnetic source layer. The geometry of the polarity boundary changes from the northern to the central regions of KMM and is believed to be related to changing lithology. In the northern region, interpreted to be a gabbro pluton, the boundary dips away from the ridge axis and is consistent with a rotated conductively cooled isotherm. In the central region the gabbros have been removed and the polarity boundary, which resides in serpentinized peridotite, dips towards the ridge axis and is thought to represent an alteration front. The linear appearance of the polarity boundary across both regions indicates that the two lithologies acquired their magnetic remanence during approximately the same time interval. Seismic events caused by detachment faulting at Kane and Atlantis Transform Faults are investigated using hydroacoustic waves (T-phases) recorded by a hydrophone array. Observations and ray trace models of event propagation show bathymetric blockage along propagation paths, but suggest current models of T-phase excitation and propagation need to be improved to explain observed characteristics of T-phase data.