Romano Anna

No Thumbnail Available
Last Name
Romano
First Name
Anna
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle
    (Institute of Electrical and Electronics Engineers, 2020-10-13) Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Ryan, John P. ; Barone, Benedetto ; Preston, Christina M. ; Roman, Brent ; Raanan, Ben-Yair ; Marin, Roman ; O’Reilly, Thomas C. ; Rueda, Carlos A. ; Pargett, Douglas ; Yamahara, Kevan M. ; Poulos, Steve ; Romano, Anna ; Foreman, Gabe ; Ramm, Hans ; Wilson, Samuel T. ; DeLong, Edward F. ; Karl, David M. ; Birch, James M. ; Bellingham, James G. ; Scholin, Christopher A.
    Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.
  • Article
    Microbial sources of exocellular DNA in the ocean
    (American Society for Microbiology, 2022-03-21) Linney, Morgan D. ; Eppley, John ; Romano, Anna ; Luo, Elaine ; DeLong, Edward F. ; Karl, David M.
    Exocellular DNA is operationally defined as the fraction of the total DNA pool that passes through a membrane filter (0.1 μm). It is composed of DNA-containing vesicles, viruses, and free DNA and is ubiquitous in all aquatic systems, although the sources, sinks, and ecological consequences are largely unknown. Using a method that provides separation of these three fractions, we compared open ocean depth profiles of DNA associated with each fraction. Pelagibacter-like DNA dominated the vesicle fractions for all samples examined over a depth range of 75 to 500 m. Viral DNA consisted predominantly of myovirus-like and podovirus-like DNA and contained the highest proportion of unannotated sequences. Euphotic zone free DNA (75 to 125 m) contained primarily bacterial and viral sequences, with bacteria dominating samples from the mesopelagic zone (500 to 1,000 m). A high proportion of mesopelagic zone free DNA sequences appeared to originate from surface waters, including a large amount of DNA contributed by high-light Prochlorococcus ecotypes. Throughout the water column, but especially in the mesopelagic zone, the composition of free DNA sequences was not always reflective of cooccurring microbial communities that inhabit the same sampling depth. These results reveal the composition of free DNA in different regions of the water column (euphotic and mesopelagic zones), with implications for dissolved organic matter cycling and export (by way of sinking particles and/or migratory zooplankton) as a delivery mechanism.