Sotin Christophe

No Thumbnail Available
Last Name
Sotin
First Name
Christophe
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Ocean system science to inform the exploration of ocean worlds
    (Oceanography Society, 2022-05-23) German, Christopher R. ; Blackman, Donna K. ; Fisher, Andrew T. ; Girguis, Peter R. ; Hand, Kevin P. ; Hoehler, Tori M. ; Huber, Julie A. ; Marshall, John C. ; Pietro, Kathryn R. ; Seewald, Jeffrey S. ; Shock, Everett ; Sotin, Christophe ; Thurnherr, Andreas M. ; Toner, Brandy M.
    Ocean worlds provide fascinating opportunities for future ocean research. They allow us to test our understanding of processes we consider fundamental to Earth’s ocean and simultaneously provide motivation to explore our ocean further and develop new technologies to do so. In parallel, ocean worlds research offers opportunities for ocean scientists to provide meaningful contributions to novel investigations in the coming decades that will search for life beyond Earth. Key to the contributions that oceanographers can make to this field is that studies of all other ocean worlds remain extremely data limited. Here, we describe an approach based on ocean systems science in which theoretical modeling can be used, in concert with targeted laboratory experimentation and direct observations in Earth’s ocean, to predict what processes (including those essential to support life) might be occurring on other ocean worlds. In turn, such an approach would help identify new technologies that might be required for future space missions as well as appropriate analog studies that could be conducted on Earth to develop and validate such technologies. Our approach is both integrative and interdisciplinary and considers multiple domains, from processes active in the subseafloor to those associated with ocean-ice feedbacks.
  • Article
    Sustaining hydrothermal circulation with gravity relevant to ocean worlds
    (American Geophysical Union, 2024-06-24) Fisher, Andrew T. ; Dickerson, Kristin L. ; Blackman, Donna K. ; Randolph-Flagg, Noah G. ; German, Christopher R. ; Sotin, Christophe
    Some ocean worlds may sustain active, seafloor hydrothermal systems, but the characteristics and controls on fluid-heat transport in these systems are not well understood. We developed three-dimensional numerical simulations, using a ridge-flank hydrothermal system on Earth as a reference, to test the influence of ocean world gravity on fluid and heat transport. Simulations represented the upper ∼4–5 km below the seafloor and explored ranges of: heat input at the base, aquifer thickness, depth, and permeability, and gravity values appropriate for Earth, Europa, and Enceladus. We tested when a hydrothermal siphon could be sustained and quantified consequent circulation temperatures, flow rates, and advective heat output. Calculations illustrate a trade-off in energy between the reduction of buoyancy at lower gravity, which tends to reduce the primary forces driving fluid circulation, and the concomitant reduction in secondary convection, which consumes available energy. When a siphon was sustained under lower gravity, circulation temperatures tended to increase modestly (which should lead to more extensive geochemical reactions), whereas mass flow rates and advective heat output tended to be reduced. Deeper subseafloor circulation resulted in higher temperatures and flow rates, with a deeper, thin aquifer being more efficient in removing heat from the rocky interior. Water-rock ratios were lower when gravity was lower, as was the efficiency of heat extraction, whereas the time required to circulate the volume of an ocean-world's ocean through the seafloor increased. This may help to explain how small ocean worlds could sustain hydrothermal circulation for a long time despite limited heat sources.