Potty
Gopu R.
Potty
Gopu R.
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
ArticleCharacterization of impact pile driving signals during installation of offshore wind turbine foundations( 2020-04-17) Amaral, Jennifer L. ; Miller, James H. ; Potty, Gopu R. ; Vigness-Raposa, Kathleen J. ; Frankel, Adam S. ; Lin, Ying-Tsong ; Newhall, Arthur E. ; Wilkes, Daniel R. ; Gavrilov, Alexander N.Impact pile driving creates intense, impulsive sound that radiates into the surrounding environment. Piles driven vertically into the seabed generate an azimuthally symmetric underwater sound field whereas piles driven on an angle will generate an azimuthally dependent sound field. Measurements were made during pile driving of raked piles to secure jacket foundation structures to the seabed in waters off the northeastern coast of the U.S. at ranges between 500 m and 15 km. These measurements were analyzed to investigate variations in rise time, decay time, pulse duration, kurtosis, and sound received levels as a function of range and azimuth. Variations in the radiated sound field along opposing azimuths resulted in differences in measured sound exposure levels of up to 10 dB and greater due to the pile rake as the sound propagated in range. The raked pile configuration was modeled using an equivalent axisymmetric FEM model to describe the azimuthally dependent measured sound fields. Comparable sound level differences in the model results confirmed that the azimuthal discrepancy observed in the measured data was due to the inclination of the pile being driven relative to the receiver.
-
ArticleA three-dimensional underwater sound propagation model for offshore wind farm noise prediction.(Acoustical Society of America, 2019-05-02) Lin, Ying-Tsong ; Newhall, Arthur E. ; Miller, James H. ; Potty, Gopu R. ; Vigness-Raposa, Kathleen J.A three-dimensional underwater sound propagation model with realistic ocean environmental conditions has been created for assessing the impacts of noise from offshore wind farm construction and operation. This model utilizes an existing accurate numerical solution scheme to solve the three-dimensional Helmholtz wave equation, and it is compared and validated with acoustic transmission data between 750 and 1250 Hz collected during the development of the Block Island Wind Farm (BIWF), Rhode Island. The variability of underwater sound propagation conditions has been investigated in the BIWF area on a temporal scale of months and a spatial scale of kilometers. This study suggests that future offshore wind farm developments can exploit the seasonal variability of underwater sound propagation for mitigating noise impact by scheduling wind farm construction during periods of high acoustic transmission loss. Discussions on other applications of soundscape prediction, planning, and management are provided.
-
ArticleGeoacoustic inversion on the New England Mud Patch using warping and dispersion curves of high-order modes(Acoustical Society of America, 2018-05-24) Bonnel, Julien ; Lin, Ying-Tsong ; Eleftherakis, Dimitrios ; Goff, John A. ; Dosso, Stan ; Chapman, Ross ; Miller, James H. ; Potty, Gopu R.This paper presents single receiver geoacoustic inversion of a combustive sound source signal, recorded during the 2017 Seabed Characterization Experiment on the New England Mud Patch, in an area where water depth is around 70 m. There are two important features in this study. First, it is shown that high-order modes can be resolved and estimated using warping (up to mode number 18 over the frequency band 20–440 Hz). However, it is not possible to determine mode numbers from the data, so that classical inversion methods that require mode identification cannot be applied. To solve this issue, an inversion algorithm that jointly estimates geoacoustic properties and identifies mode number is proposed. It is successfully applied on a range-dependent track, and provides a reliable range-average estimation of geoacoustic properties of the mud layer, an important feature of the seabed on the experimental area.