Simmons Sheri L.

No Thumbnail Available
Last Name
Simmons
First Name
Sheri L.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Spatiotemporal distribution of marine magnetotactic bacteria in a aeasonally stratified coastal salt pond
    (American Society for Microbiology, 2004-10) Simmons, Sheri L. ; Sievert, Stefan M. ; Frankel, R. B. ; Bazylinski, D. A. ; Edwards, Katrina J.
    The occurrence and distribution of magnetotactic bacteria (MB) were studied as a function of the physical and chemical conditions in meromictic Salt Pond, Falmouth, Mass., throughout summer 2002. Three dominant MB morphotypes were observed to occur within the chemocline. Small microaerophilic magnetite-producing cocci were present at the top of the chemocline, while a greigite-producing packet-forming bacterium occurred at the base of the chemocline. The distributions of these groups displayed sharp changes in abundance over small length scales within the water column as well as strong seasonal fluctuations in population abundance. We identified a novel, greigite-producing rod in the sulfidic hypolimnion that was present in relatively constant abundance over the course of the season. This rod is the first MB that appears to belong to the {gamma}-Proteobacteria, which may suggest an iron- rather than sulfur-based respiratory metabolism. Its distribution and phylogenetic identity suggest that an alternative model for the ecological and physiological role of magnetotaxis is needed for greigite-producing MB.
  • Article
    Leaf-FISH : microscale imaging of bacterial taxa on phyllosphere
    (Frontiers Media, 2018-01-09) Peredo, Elena L. ; Simmons, Sheri L.
    Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents.
  • Article
    Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates
    (BioMed Central, 2011-12-14) Xia, Li C. ; Steele, Joshua A. ; Cram, Jacob A. ; Cardon, Zoe G. ; Simmons, Sheri L. ; Vallino, Joseph J. ; Fuhrman, Jed A. ; Sun, Fengzhu
    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa
  • Thesis
    Geobiology of marine magnetotactic bacteria
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-06) Simmons, Sheri L.
    Magnetotactic bacteria (MTB) biomineralize intracellular membrane-bound crystals of magnetite (Fe3O4) or greigite (Fe3S4), and are abundant in the suboxic to anoxic zones of stratified marine environments worldwide. Their population densities (up to 105 cells ml−1) and high intracellular iron content suggest a potentially significant role in iron cycling, but very little is known about their population dynamics and regulation by environmental geochemistry. The MTB community in Salt Pond (Falmouth, MA), a small stratified marine basin, was used as a model system for quantitative community studies. Magnetiteproducing MTB predominate slightly above the oxic-anoxic interface and greigiteproducing MTB predominate in sulfidic waters. A quantitative PCR (QPCR) assay was developed and applied to enumerate four major groups of MTB in Salt Pond: magnetite-producing cocci, barbells, the greigite-producing many-celled magnetotactic prokaryote (MMP), and a greigite-producing rod. The barbells were identified as δ-Proteobacteria while the rod was identified as the first MTB in the γ-Proteobacteria. The MMP, previously thought to be a single species, consists of at least five clades with greater than 5% divergence in their 16s rRNA. Fluorescent in situ hybridization probes showed significant variation in clade abundances across a seasonal cycle in salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely layered around the oxic-anoxic interface: cocci immediately above the dissolved Fe(II) peak, barbells immediately below, the MMP in microsulfidic waters, and the greigite-producing rod in low numbers (100 cells ml−1) below the gradient region. The barbell reached 1-10% of total eubacteria in the late season, and abundances of cocci and barbells appeared to vary inversely. Calculations based on qPCR data suggest that MTB are significant unrecognized contributors to iron flux in stratified environments. Barbells can respond to high oxygen levels by swimming toward geomagnetic south, the opposite of all previously reported magnetotactic behavior. This behavior is at least partially dependent on environmental oxidation-reduction potential. The co-existence of MTB with opposing polarities in the same redox environment conflicts with current models of the adaptive value of magnetotaxis.
  • Article
    Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities
    (American Society for Microbiology, 2014-01-21) Maignien, Lois ; DeForce, Emelia A. ; Chafee, Meghan E. ; Eren, A. Murat ; Simmons, Sheri L.
    Bacteria living on the aerial parts of plants (the phyllosphere) are globally abundant and ecologically significant communities and can have significant effects on their plant hosts. Despite their importance, little is known about the ecological processes that drive phyllosphere dynamics. Here, we describe the development of phyllosphere bacterial communities over time on the model plant Arabidopsis thaliana in a controlled greenhouse environment. We used a large number of replicate plants to identify repeatable dynamics in phyllosphere community assembly and reconstructed assembly history by measuring the composition of the airborne community immigrating to plant leaves. We used more than 260,000 sequences from the v5v6 hypervariable region of the 16S rRNA gene to characterize bacterial community structure on 32 plant and 21 air samples over 73 days. We observed strong, reproducible successional dynamics: phyllosphere communities initially mirrored airborne communities and subsequently converged to a distinct community composition. While the presence or absence of particular taxa in the phyllosphere was conserved across replicates, suggesting strong selection for community composition, the relative abundance of these taxa was highly variable and related to the spatial association of individual plants. Our results suggest that stochastic events in early colonization, coupled with dispersal limitation, generated alternate trajectories of bacterial community assembly within the context of deterministic selection for community membership.