Christiansen
Fredrik
Christiansen
Fredrik
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticlePopulation comparison of right whale body condition reveals poor state of the North Atlantic right whale(Inter Research, 2020-04-23) Christiansen, Fredrik ; Dawson, Stephen M. ; Durban, John W. ; Fearnbach, Holly ; Miller, Carolyn A. ; Bejder, Lars ; Uhart, Marcela ; Sironi, Mariano ; Corkeron, Peter ; Rayment, William ; Leunissen, Eva ; Haria, Eashani ; Ward, Rhianne ; Warick, Hunter A. ; Kerr, Iain ; Lynn, Morgan S. ; Pettis, Heather M. ; Moore, Michael J.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.
-
ArticleSeasonal gain in body condition of foraging humpback whales along the Western Antarctic Peninsula(Frontiers Media, 2022-11-21) Bierlich, K. C. ; Hewitt, Joshua ; Schick, Robert S. ; Pallin, Logan ; Dale, Julian ; Friedlaender, Ari S. ; Christiansen, Fredrik ; Sprogis, Kate R. ; Dawn, Allison H. ; Bird, Clara N. ; Larsen, Gregory D. ; Nichols, Ross ; Shero, Michelle R. ; Goldbogen, Jeremy ; Read, Andrew J. ; Johnston, David W.Most baleen whales are capital breeders that use stored energy acquired on foraging grounds to finance the costs of migration and reproduction on breeding grounds. Body condition reflects past foraging success and can act as a proxy for individual fitness. Hence, monitoring the seasonal gain in body condition of baleen whales while on the foraging grounds can inform how marine mammals support the costs of migration, growth, and reproduction, as well as the nutritional health of the overall population. Here, we use photogrammetry from drone-based imagery to examine how the body condition of humpback whales (Megaptera novaeangliae) changed over the foraging season (November to June) along the Western Antarctic Peninsula (WAP) from 2017 to 2019. This population (IWC stock G) is recovering from past whaling and is growing rapidly, providing an opportunity to study how whales store energy in a prey-rich environment. We used a body area index (BAI) to estimate changes in body condition and applied a Bayesian approach to incorporate measurement uncertainty associated with different drone types used for data collection. We used biopsy samples to determine sex and pregnancy status, and a length-based maturity classification to assign reproductive classes (n= 228; calves = 31, juveniles = 82, lactating females = 31, mature males = 12, mature unknown sex = 56, non-pregnant females = 12, pregnant females = 3, pregnant & lactating females = 1). Average BAI increased linearly over the feeding season for each reproductive class. Lactating females had lower BAI compared to other mature whales late in the season, reflecting the high energetic costs of nursing a calf. Mature males and non-pregnant females had the highest BAI values. Calves and juvenile whales exhibited an increase in BAI but not structural size (body length) over the feeding season. The body length of lactating mothers was positively correlated with the body length of their calves, but no relationship was observed between the BAI of mothers and their calves. Our study establishes a baseline for seasonal changes in the body condition for this humpback whale population, which can help monitor future impacts of disturbance and climate change.