Shroyer Emily L.

No Thumbnail Available
Last Name
Shroyer
First Name
Emily L.
ORCID

Search Results

Now showing 1 - 20 of 21
  • Article
    Submesoscale processes at shallow salinity fronts in the Bay of Bengal : observations during the winter monsoon
    (American Meteorological Society, 2018-02-26) Ramachandran, Sanjiv ; Tandon, Amit ; MacKinnon, Jennifer A. ; Lucas, Andrew J. ; Pinkel, Robert ; Waterhouse, Amy F. ; Nash, Jonathan D. ; Shroyer, Emily L. ; Mahadevan, Amala ; Weller, Robert A. ; Farrar, J. Thomas
    Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
  • Article
    Wind-driven modification of the Alaskan coastal current
    (American Geophysical Union, 2012-03-20) Shroyer, Emily L. ; Plueddemann, Albert J.
    Across-shelf transects over the eastern flank of Barrow Canyon were obtained in August 2005 with an autonomous underwater vehicle (AUV). Here, the shelf topography creates a “choke” point in which a substantial portion of Pacific inflow from the Bering Strait is concentrated within 30 km of the coast, providing an ideal setup for monitoring the flow with the AUV. Four transects, extending ∼10 km offshore of Barrow, Alaska, inshore of the ∼80 m isobath, were used in conjunction with a process-oriented numerical model to diagnose the wind-driven modification of the Alaskan coastal current. Poleward transports of 0.12 Sv were consistent among all sections, although the transport-weighted temperature was about 1°C colder in the transect obtained during peak winds. An idealized numerical model reproduces the observed hydrographic structure and across-shelf circulation reasonably well in that (1) winds were not sufficient to reverse the poleward flow, (2) upwelling was most pronounced in the nearshore, and (3) the onshore return flow occurred throughout the interior as opposed to the bottom boundary layer. The across-shelf circulation provides a possible mechanism for a meltwater intrusion observed on the offshore side of the AUV transect made during peak winds. Also of interest is that the observed anticyclonic shear was much stronger (∣∂u/∂y∣ > f) than previously measured in the region.
  • Article
    Nonlinear internal waves over New Jersey's continental shelf
    (American Geophysical Union, 2011-03-23) Shroyer, Emily L. ; Moum, James N. ; Nash, Jonathan D.
    Ship and mooring data collected off the coast of New Jersey are used to describe the nonlinear internal wave (NLIW) field and the background oceanographic conditions that formed the waveguide on the shelf. The subinertial, inertial, and tidal circulation are described in detail, and the background fluid state is characterized using the coefficients of the extended Korteweg–de Vries equation. The utility of this type of analysis is demonstrated in description of an amplitude-limited, flat wave. NLIWs observed over most of the month had typical displacements of −8 m, but waves observed from 17–21 August were almost twice as large with displacements near −15 m. During most of the month, wave packets occurred irregularly at a fixed location, and often more than one packet was observed per M2 tidal period. In contrast, the arrival times of the large-amplitude wave groups observed over 17–21 August were more closely phased with the barotropic tide. The time span in which the largest NLIWs were observed corresponded to neap barotropic conditions, but when the shoreward baroclinic energy flux was elevated. During the time of large NLIWs, near-inertial waves were a dominate contributor to the internal motions on the shelf and apparently regulated wave formation, as destructive/constructive modulation of the M2 internal tide by the inertial wavefield at the shelf break corresponded to stronger/weaker NLIWs on the shelf.
  • Article
    Are any coastal internal tides predictable?
    (The Oceanography Society, 2012-06) Nash, Jonathan D. ; Shroyer, Emily L. ; Kelly, Samuel M. ; Inall, Mark E. ; Duda, Timothy F. ; Levine, Murray D. ; Jones, Nicole L. ; Musgrave, Ruth C.
    Surface tides are the heartbeat of the ocean. Because they are controlled by Earth's motion relative to other astronomical objects in our solar system, surface tides act like clockwork and generate highly deterministic ebb and flow familiar to all mariners. In contrast, baroclinic motions at tidal frequencies are much more stochastic, owing to complexities in how these internal motions are generated and propagate. Here, we present analysis of current records from continental margins worldwide to illustrate that coastal internal tides are largely unpredictable. This conclusion has numerous implications for coastal processes, as across-shelf exchange and vertical mixing are, in many cases, strongly influenced by the internal wave field.
  • Article
    Turbulent kinetic energy dissipation in Barrow Canyon
    (American Meteorological Society, 2012-06) Shroyer, Emily L.
    Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast corner of the Chukchi. Barrow Canyon is a region of complex geometry and forcing where a variety of water masses have been observed to coexist. These factors contribute to a dynamic physical environment, with the potential for significant water mass transformation. The measurements of turbulent kinetic energy dissipation presented here indicate diapycnal mixing is important in the upper canyon. Elevated dissipation rates were observed near the pycnocline, effectively mixing winter and summer water masses, as well as within the bottom boundary layer. The slopes of shear/stratification layers, combined with analysis of rotary spectra, suggest that near-inertial wave activity may be important in modulating dissipation near the bottom. Because the canyon is known to be a hotspot of productivity with an active benthic community, mixing may be an important factor in maintenance of the biological environment.
  • Article
    Seasonality and buoyancy suppression of turbulence in the Bay of Bengal
    (American Geophysical Union, 2019-04-08) Thakur, Ritabrata ; Shroyer, Emily L. ; Govindarajan, Rama ; Farrar, J. Thomas ; Weller, Robert A. ; Moum, James N.
    A yearlong record from moored current, temperature, conductivity, and four mixing meters (χpods) in the northernmost international waters of the Bay of Bengal quantifies upper‐ocean turbulent diffusivity of heat (Kt) and its response to the Indian monsoon. Data indicate (1) pronounced intermittency in turbulence at semidiurnal, diurnal, and near‐inertial timescales, (2) strong turbulence above 25‐m depth during the SW (summer) and NE (winter) monsoon relative to the transition periods (compare Kt > 10−4 m2/s to Kt  ∼ 10−5 m2/s, and (3) persistent suppression of turbulence (Kt < 10−5 m2/s) for 3 to 5 months in the latter half of the SW monsoon coincident with enhanced near‐surface stratification postarrival of low‐salinity water from the Brahmaputra‐Ganga‐Meghna delta and monsoonal precipitation. This suppression promotes maintenance of the low‐salinity surface waters within the interior of the bay preconditioning the upper northern Indian Ocean for the next year's monsoon.
  • Article
    Mode 2 waves on the continental shelf : ephemeral components of the nonlinear internal wavefield
    (American Geophysical Union, 2010-07-02) Shroyer, Emily L. ; Moum, James N. ; Nash, Jonathan D.
    Shoreward propagating, mode 2 nonlinear waves appear sporadically in mooring records obtained off the coast of New Jersey in the summer of 2006. Individual mode 2 packets were tracked between two moorings separated by 1 km; however, packets could not be tracked between moorings separated by greater distances from one another (∼10 km). The inability to track individual packets large distances through the mooring array combined with detailed observations from a ship suggest that these waves are short lived. The evolution of the ship-tracked wave group was recorded using acoustic backscatter, acoustic Doppler current profilers, and turbulence profiling. The leading mode 2 wave quickly changed form and developed a tail of short, small-amplitude mode 1 waves. The wavelength of the mode 1 oscillations agreed with that expected for a copropagating tail on the basis of linear theory. Turbulent dissipation in the mixed layer and radiation of the short mode 1 waves contributed to rapid energy loss in the leading mode 2 wave, consistent with the observed decay rate and short life span of only a few hours. The energy in the leading mode 2 wave was 10–100 times smaller than the energy of mode 1 nonlinear internal waves observed during the experiment; however, the magnitudes of wave-localized turbulent dissipation were similar.
  • Article
    Shear turbulence in the high-wind Southern Ocean using direct measurements
    (American Meteorological Society, 2022-09-19) Ferris, Laur ; Gong, Donglai ; Clayson, Carol A. ; Merrifield, Sophia T. ; Shroyer, Emily L. ; Smith, Madison M. ; St. Laurent, Louis C.
    The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
  • Article
    On the future of Argo: A global, full-depth, multi-disciplinary array
    (Frontiers Media, 2019-08-02) Roemmich, Dean ; Alford, Matthew H. ; Claustre, Hervé ; Johnson, Kenneth S. ; King, Brian ; Moum, James N. ; Oke, Peter ; Owens, W. Brechner ; Pouliquen, Sylvie ; Purkey, Sarah G. ; Scanderbeg, Megan ; Suga, Koushirou ; Wijffels, Susan E. ; Zilberman, Nathalie ; Bakker, Dorothee ; Baringer, Molly O. ; Belbeoch, Mathieu ; Bittig, Henry C. ; Boss, Emmanuel S. ; Calil, Paulo H. R. ; Carse, Fiona ; Carval, Thierry ; Chai, Fei ; Conchubhair, Diarmuid Ó. ; d’Ortenzio, Fabrizio ; Dall'Olmo, Giorgio ; Desbruyeres, Damien ; Fennel, Katja ; Fer, Ilker ; Ferrari, Raffaele ; Forget, Gael ; Freeland, Howard ; Fujiki, Tetsuichi ; Gehlen, Marion ; Geenan, Blair ; Hallberg, Robert ; Hibiya, Toshiyuki ; Hosoda, Shigeki ; Jayne, Steven R. ; Jochum, Markus ; Johnson, Gregory C. ; Kang, KiRyong ; Kolodziejczyk, Nicolas ; Körtzinger, Arne ; Le Traon, Pierre-Yves ; Lenn, Yueng-Djern ; Maze, Guillaume ; Mork, Kjell Arne ; Morris, Tamaryn ; Nagai, Takeyoshi ; Nash, Jonathan D. ; Naveira Garabato, Alberto C. ; Olsen, Are ; Pattabhi Rama Rao, Eluri ; Prakash, Satya ; Riser, Stephen C. ; Schmechtig, Catherine ; Schmid, Claudia ; Shroyer, Emily L. ; Sterl, Andreas ; Sutton, Philip J. H. ; Talley, Lynne D. ; Tanhua, Toste ; Thierry, Virginie ; Thomalla, Sandy J. ; Toole, John M. ; Troisi, Ariel ; Trull, Thomas W. ; Turton, Jon ; Velez-Belchi, Pedro ; Walczowski, Waldemar ; Wang, Haili ; Wanninkhof, Rik ; Waterhouse, Amy F. ; Waterman, Stephanie N. ; Watson, Andrew J. ; Wilson, Cara ; Wong, Annie P. S. ; Xu, Jianping ; Yasuda, Ichiro
    The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. Following recent advances in platform and sensor technologies, even greater opportunity exists now than 20 years ago to (i) improve Argo’s global coverage and value beyond the original design, (ii) extend Argo to span the full ocean depth, (iii) add biogeochemical sensors for improved understanding of oceanic cycles of carbon, nutrients, and ecosystems, and (iv) consider experimental sensors that might be included in the future, for example to document the spatial and temporal patterns of ocean mixing. For Core Argo and each of these enhancements, the past, present, and future progression along a path from experimental deployments to regional pilot arrays to global implementation is described. The objective is to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo Program that will integrate seamlessly with satellite and with other in situ elements of the Global Ocean Observing System (Legler et al., 2015). The integrated system will deliver operational reanalysis and forecasting capability, and assessment of the state and variability of the climate system with respect to physical, biogeochemical, and ecosystems parameters. It will enable basic research of unprecedented breadth and magnitude, and a wealth of ocean-education and outreach opportunities.
  • Article
    A tale of two spicy seas
    (The Oceanography Society, 2016-06) MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Alford, Matthew H. ; Lucas, Andrew J. ; Mickett, John B. ; Shroyer, Emily L. ; Waterhouse, Amy F. ; Tandon, Amit ; Sengupta, Debasis ; Mahadevan, Amala ; Ravichandran, M. ; Pinkel, Robert ; Rudnick, Daniel L. ; Whalen, Caitlin B. ; Alberty, Marion S. ; Lekha, J. Sree ; Fine, Elizabeth C. ; Chaudhuri, Dipayan ; Wagner, Gregory L.
    Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean’s horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.
  • Article
    Freshwater in the Bay of Bengal : its fate and role in air-sea heat exchange
    (The Oceanography Society, 2016-06) Mahadevan, Amala ; Spiro Jaeger, Gualtiero ; Freilich, Mara ; Omand, Melissa M. ; Shroyer, Emily L. ; Sengupta, Debasis
    The strong salinity stratification in the upper 50–80 m of the Bay of Bengal affects the response of the upper ocean to surface heat fluxes. Using observations from November to December 2013, we examine the effect of surface cooling on the temperature structure of the ocean in a one-dimensional framework. The presence of freshwater adds gravitational stability to the density stratification and prevents convective overturning, even when the surface becomes cooler than the subsurface. This stable salinity stratification traps heat within subsurface layers. The ocean’s reluctance to release the heat trapped within these subsurface warm layers can contribute to delayed rise in surface temperature and heat loss from the ocean as winter progresses. Understanding the dispersal of freshwater throughout the bay can help scientists assess its potential for generating the anomalous temperature response. We use the Aquarius along-track surface salinity and satellite-derived surface velocities to trace the evolution and modification of salinity in the Lagrangian frame of water parcels as they move through the bay with the mesoscale circulation. This advective tracking of surface salinities provides a Lagrangian interpolation of the monthly salinity fields in 2013 and shows the evolution of the freshwater distribution. The along-trajectory rate of salinification of water as it leaves the northern bay is estimated and interpreted to result from mixing processes that are likely related to the host of submesoscale signatures observed during our field campaigns.
  • Article
    Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification
    (The Oceanography Society, 2016-06) Shroyer, Emily L. ; Rudnick, Daniel L. ; Farrar, J. Thomas ; Lim, Byungho ; Venayagamoorthy, Subhas K. ; St. Laurent, Louis C. ; Garanaik, Amrapalli ; Moum, James N.
    The Bay of Bengal has a complex upper-ocean temperature and salinity structure that is, in places, characterized by strong salinity stratification and multiple inversions in temperature. Here, two short time series from continuously profiling floats, equipped with microstructure sensors to measure subsurface mixing, are used to highlight implications of complex hydrography on upper-ocean heat content and the evolution of sea surface temperature. Weak mixing coupled with the existence of subsurface warm layers suggest the potential for storage of heat below the surface mixed layer over relatively long time scales. On the diurnal time scale, these data demonstrate the competing effects of surface heat flux and subsurface mixing in the presence of thin salinity-stratified mixed layers with temperature inversions. Pre-existing stratification can amplify the sea surface temperature response through control on the vertical extent of heating and cooling by surface fluxes. In contrast, subsurface mixing entrains relatively cool water during the day and relatively warm water during the night, damping the response to daytime heating and nighttime cooling at the surface. These observations hint at the challenges involved in improving monsoon prediction at longer, intraseasonal time scales as models may need to resolve upper-ocean variability over short time and fine vertical scales.
  • Article
    Observations and modeling of a hydrothermal plume in Yellowstone Lake
    (American Geophysical Union, 2019-05-09) Sohn, Robert A. ; Luttrell, Karen M. ; Shroyer, Emily L. ; Stranne, Christian ; Harris, Robert N. ; Favorito, Julia E.
    Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.
  • Article
    Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal
    (The Oceanography Society, 2016-06) Sarma, V. V. S. S. ; Rao, G. S. ; Viswanadham, R. ; Sherin, C. K. ; Salisbury, Joseph E. ; Omand, Melissa M. ; Mahadevan, Amala ; Murty, V. S. N. ; Shroyer, Emily L. ; Baumgartner, Mark F. ; Stafford, Kathleen M.
    The Bay of Bengal (BoB) is strongly density stratified due to large freshwater input from various rivers and heavy precipitation. This strong vertical stratification, along with physical processes, regulates the transport and vertical exchange of surface and subsurface water, concentrating nutrients and intensifying the oxygen minimum zone (OMZ). Here, we use basinwide measurements to describe the spatial distributions of nutrients, oxygen, and phytoplankton within the BoB during the 2013 northeast monsoon (November–December). By the time riverine water reaches the interior bay, it is depleted in the nutrients nitrate and phosphate, but not silicate. Layering of freshwater in the northern BoB depresses isopycnals, leading to a deepening of the nutricline and oxycline. Oxygen concentrations in the OMZ are lowest in the north (<5 µM). Weak along-isopycnal nutrient gradients reflect along-isopycnal stirring between ventilated surface water and deep nutrient-replenished water. Picoplankton dominate the phytoplankton population in the north, presumably outcompeting larger phytoplankton species due to their low nutrient requirements. Micro- and nanoplankton numbers are enhanced in regions with deeper mixed layers and weaker stratification, where nutrient replenishment from subsurface waters is more feasible. These are also the regions where marine mammals were sighted. Physical processes and the temperature-salinity structure in the BoB directly influence the OMZ and the depth of the oxycline and nutricline, thereby affecting the phytoplankton and marine mammal communities.
  • Article
    How spice is stirred in the Bay of Bengal
    (American Meteorological Society, 2020-08-31) Spiro Jaeger, Gualtiero ; MacKinnon, Jennifer A. ; Lucas, Andrew J. ; Shroyer, Emily L. ; Nash, Jonathan D. ; Tandon, Amit ; Farrar, J. Thomas ; Mahadevan, Amala
    The scale-dependent variance of tracer properties in the ocean bears the imprint of the oceanic eddy field. Anomalies in spice (which combines anomalies in temperature T and salinity S on isopycnal surfaces) act as passive tracers beneath the surface mixed layer (ML). We present an analysis of spice distributions along isopycnals in the upper 200 m of the ocean, calculated with over 9000 vertical profiles of T and S measured along ~4800 km of ship tracks in the Bay of Bengal. The data are from three separate research cruises—in the winter monsoon season of 2013 and in the late and early summer monsoon seasons of 2015 and 2018. We present a spectral analysis of horizontal tracer variance statistics on scales ranging from the submesoscale (~1 km) to the mesoscale (~100 km). Isopycnal layers that are closer to the ML-base exhibit redder spectra of tracer variance at scales ≲10 km than is predicted by theories of quasigeostrophic turbulence or frontogenesis. Two plausible explanations are postulated. The first is that stirring by submesoscale motions and shear dispersion by near-inertial waves enhance effective horizontal mixing and deplete tracer variance at horizontal scales ≲10 km in this region. The second is that the spice anomalies are coherent with dynamical properties such as potential vorticity, and not interpretable as passively stirred.
  • Article
    Progress in understanding of Indian Ocean circulation, variability, air-sea exchange, and impacts on biogeochemistry
    (European Geosciences Union, 2021-11-26) Phillips, Helen E. ; Tandon, Amit ; Furue, Ryo ; Hood, Raleigh R. ; Ummenhofer, Caroline C. ; Benthuysen, Jessica A. ; Menezes, Viviane V. ; Hu, Shijian ; Webber, Ben ; Sanchez-Franks, Alejandra ; Cherian, Deepak A. ; Shroyer, Emily L. ; Feng, Ming ; Wijesekera, Hemantha W. ; Chatterjee, Abhisek ; Yu, Lisan ; Hermes, Juliet ; Murtugudde, Raghu ; Tozuka, Tomoki ; Su, Danielle ; Singh, Arvind ; Centurioni, Luca R. ; Prakash, Satya ; Wiggert, Jerry D.
    Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade.
  • Article
    Bay of Bengal : 2013 northeast monsoon upper-ocean circulation
    (The Oceanography Society, 2016-06) Gordon, Arnold L. ; Shroyer, Emily L. ; Mahadevan, Amala ; Sengupta, Debasis ; Freilich, Mara
    The upper 200 m of the two northern Indian Ocean embayments, the Bay of Bengal (BoB) and the Arabian Sea (AS), differ sharply in their salinity stratification, as the Asian monsoon injects massive amounts of freshwater into the BoB while removing freshwater via evaporation from the AS. The ocean circulation transfers salt from the AS to the BoB and exports freshwater from the BoB to mitigate the salinity difference and reach a quasi-steady state, albeit with strong seasonality. An energetic field of mesoscale features and an intrathermocline eddy was observed within the BoB during the R/V Revelle November and December 2013 Air-Sea Interactions Regional Initiative cruises, marking the early northeast monsoon phase. Mesoscale features, which display a surprisingly large thermohaline range within their confines, obscure the regional surface water and thermohaline stratification patterns, as observed by satellite and Argo profilers. Ocean processes blend the fresh and salty features along and across density surfaces, influencing sea surface temperature and air-sea flux. Comparing the Revelle observations to the Argo data reveals a general westward migration of mesoscale features across the BoB.
  • Article
    The unpredictable nature of internal tides on continental shelves
    (American Meteorological Society, 2012-11) Nash, Jonathan D. ; Kelly, Samuel M. ; Shroyer, Emily L. ; Moum, James N. ; Duda, Timothy F.
    Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.
  • Article
    ASIRI : an ocean–atmosphere initiative for Bay of Bengal
    (American Meteorological Society, 2016-11-22) Wijesekera, Hemantha W. ; Shroyer, Emily L. ; Tandon, Amit ; Ravichandran, M. ; Sengupta, Debasis ; Jinadasa, S. U. P. ; Fernando, Harindra J. S. ; Agrawal, Neeraj ; Arulananthan, India K. ; Bhat, G. S. ; Baumgartner, Mark F. ; Buckley, Jared ; Centurioni, Luca R. ; Conry, Patrick ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hormann, Verena ; Jarosz, Ewa ; Jensen, Tommy G. ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lee, Craig M. ; Leo, Laura S. ; Lozovatsky, Iossif ; Lucas, Andrew J. ; MacKinnon, Jennifer A. ; Mahadevan, Amala ; Nash, Jonathan D. ; Omand, Melissa M. ; Pham, Hieu ; Pinkel, Robert ; Rainville, Luc ; Ramachandran, Sanjiv ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Send, Uwe ; Sharma, Rashmi ; Simmons, Harper L. ; Stafford, Kathleen M. ; St. Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Venkatesan, Ramasamy ; Teague, William J. ; Wang, David W. ; Waterhouse, Amy F. ; Weller, Robert A. ; Whalen, Caitlin B.
    Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
  • Article
    Vertical heat flux and lateral mass transport in nonlinear internal waves
    (American Geophysical Union, 2010-04-24) Shroyer, Emily L. ; Moum, James N. ; Nash, Jonathan D.
    Comprehensive observations of velocity, density, and turbulent dissipation permit quantification of the nonlinear internal wave (NLIW) contribution to vertical heat flux and lateral mass transport over New Jersey's shelf. The effect of NLIWs on the shelf heat budget was significant. On average, heat flux in NLIWs was 10 times larger than background at the pycnocline depth. NLIWs were present at midshelf <10% of the time, yet we estimate that they contributed roughly one−half the heat flux across the pycnocline during the observation period, which was characterized by weak to moderate winds. Lateral transport distances due to the leading 3 waves in NLIW packets were typically inline equation(100 m) but ranged several kilometers. The month-averaged daily onshore transport (per unit alongshelf dimension) by NLIWs is estimated as 0.3 m2s−1. This is comparable to a weak downwelling wind, but sustained over an entire month.