Kimoto Katsunori

No Thumbnail Available
Last Name
Kimoto
First Name
Katsunori
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Shelled pteropods in peril : assessing vulnerability in a high CO2 ocean
    (Elsevier, 2017-04-09) Manno, Clara ; Bednarsek, Nina ; Tarling, Geraint A. ; Peck, Vicky L. ; Comeau, Steeve ; Adhikari, Deepak ; Bakker, Dorothee ; Bauerfeind, Eduard ; Bergan, Alexander J. ; Berning, Maria I. ; Buitenhuis, Erik T. ; Burridge, Alice K. ; Chierici, Melissa ; Flöter, Sebastian ; Fransson, Agneta ; Gardner, Jessie ; Howes, Ella L. ; Keul, Nina ; Kimoto, Katsunori ; Kohnert, Peter ; Lawson, Gareth L. ; Lischka, Silke ; Maas, Amy E. ; Mekkes, Lisette ; Oakes, Rosie L. ; Pebody, Corinne ; Peijnenburg, Katja T. C. A. ; Seifert, Miriam ; Skinner, Jennifer ; Thibodeau, Patricia S. ; Wall-Palmer, Deborah ; Ziveri, Patrizia
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
  • Article
    Hydrothermal vent chimney-base sediments as unique habitat for meiobenthos and nanobenthos: observations on millimeter-scale distributions
    (Frontiers Media, 2023-01-12) Bernhard, Joan M. ; Nomaki, Hidetaka ; Shiratori, Takashi ; Elmendorf, Anastasia ; Yabuki, Akinori ; Kimoto, Katsunori ; Tsuchiya, Masashi ; Shimanaga, Motohiro
    Hydrothermal vents are critical to marine geochemical cycling and ecosystem functioning. Although hydrothermal vent-associated megafauna and chemoautotrophic prokaryotes have received extensive dedicated study, smaller hydrothermal vent-associated eukaryotes such as meiofauna and nanobiota have received much less attention. These communities comprise critical links in trophic flow and carbon cycling of other marine habitats, so study of their occurrence and role in hydrothermal vent ecosystems is warranted. Further, an understudied vent habitat is the thin sediment cover at the base of hydrothermal vent chimneys. An initial study revealed that sediments at the base of vent chimneys of the Izu-Ogawasara Arc system (western North Pacific) support metazoan meiofauna, but very little is known about the taxonomic composition and abundance of the meiobenthic protists and nanobiota, or their millimeter-scale distributions. Using the Fluorescently Labeled Embedded Coring method (FLEC), we describe results on meiofaunal and nanobiota higher-level identifications, life positions and relative abundances within sediments from three habitats (base of vent chimneys, inside caldera but away from chimneys, and outside caldera) of the Myojin-Knoll caldera and vicinity. Results suggest that the chimney-base community is unique and more abundant compared to non-chimney associated eukaryotic communities. Supporting evidence (molecular phylogeny, scanning and transmission electron microscopy imaging) documents first known hydrothermal-vent-associated occurrences for two protist taxa. Collectively, results provide valuable insights into a cryptic component of the hydrothermal vent ecosystem.