Muller Mark R.

No Thumbnail Available
Last Name
Muller
First Name
Mark R.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Water in cratonic lithosphere : calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations
    (American Geophysical Union, 2012-06-14) Jones, Alan G. ; Fullea, Javier ; Evans, Rob L. ; Muller, Mark R.
    Measurements of electrical conductivity of “slightly damp” mantle minerals from different laboratories are inconsistent, requiring geophysicists to make choices between them when interpreting their electrical observations. These choices lead to dramatically different conclusions about the amount of water in the mantle, resulting in conflicting conclusions regarding rheological conditions; this impacts on our understanding of mantle convection, among other processes. To attempt to reconcile these differences, we test the laboratory-derived proton conduction models by choosing the simplest petrological scenario possible – cratonic lithosphere – from two locations in southern Africa where we have the most complete knowledge. We compare and contrast the models with field observations of electrical conductivity and of the amount of water in olivine and show that none of the models for proton conduction in olivine proposed by three laboratories are consistent with the field observations. We derive statistically model parameters of the general proton conduction equation that satisfy the observations. The pre-exponent dry proton conduction term (σ0) and the activation enthalpy (ΔHwet) are derived with tight bounds, and are both within the broader 2σ errors of the different laboratory measurements. The two other terms used by the experimentalists, one to describe proton hopping (exponent r on pre-exponent water content Cw) and the other to describe H2O concentration-dependent activation enthalpy (term αCw1/3 added to the activation energy), are less well defined and further field geophysical and petrological observations are required, especially in regions of higher temperature and higher water content.
  • Article
    Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African Magnetotelluric Experiment
    (American Geophysical Union, 2011-02-03) Miensopust, Marion P. ; Jones, Alan G. ; Muller, Mark R. ; Garcia, Xavier ; Evans, Rob L.
    Within the framework of the Southern African Magnetotelluric Experiment a focused study was undertaken to gain improved knowledge of the lithospheric geometries and structures of the westerly extension of the Zimbabwe craton (ZIM) into Botswana, with the overarching aim of increasing our understanding of southern African tectonics. The area of interest is located in northeastern Botswana, where Kalahari sands cover most of the geological terranes and very little is known about lithospheric structures and thicknesses. Some of the regional-scale terrane boundary locations, defined based on potential field data, are not sufficiently accurate for local-scale studies. Investigation of the NNW-SSE orientated, 600 km long ZIM line profile crossing the Zimbabwe craton, Magondi mobile belt, and Ghanzi-Chobe belt showed that the Zimbabwe craton is characterized by thick (∼220 km) resistive lithosphere, consistent with geochemical and geothermal estimates from kimberlite samples of the nearby Orapa and Letlhakane pipes (∼175 km west of the profile). The lithospheric mantle of the Ghanzi-Chobe belt is resistive, but its lithosphere is only about 180 km thick. At crustal depths a northward dipping boundary between the Ghanzi-Chobe and the Magondi belts is identified, and two middle to lower crustal conductors are discovered in the Magondi belt. The crustal terrane boundary between the Magondi and Ghanzi-Chobe belts is found to be located further to the north, and the southwestern boundary of the Zimbabwe craton might be further to the west, than previously inferred from the regional potential field data.
  • Article
    Electrical lithosphere beneath the Kaapvaal craton, southern Africa
    (American Geophysical Union, 2011-04-20) Evans, Rob L. ; Jones, Alan G. ; Garcia, Xavier ; Muller, Mark R. ; Hamilton, Mark P. ; Evans, Shane ; Fourie, C. J. S. ; Spratt, Jessica ; Webb, Susan J. ; Jelsma, Hielke ; Hutchins, David A.
    A regional-scale magnetotelluric (MT) experiment across the southern African Kaapvaal craton and surrounding terranes, called the Southern African Magnetotelluric Experiment (SAMTEX), has revealed complex structure in the lithospheric mantle. Large variations in maximum resistivity at depths to 200–250 km relate directly to age and tectonic provenance of surface structures. Within the central portions of the Kaapvaal craton are regions of resistive lithosphere about 230 km thick, in agreement with estimates from xenolith thermobarometry and seismic surface wave tomography, but thinner than inferred from seismic body wave tomography. The MT data are unable to discriminate between a completely dry or slightly “damp” (a few hundred parts per million of water) structure within the transitional region at the base of the lithosphere. However, the structure of the uppermost ∼150 km of lithosphere is consistent with enhanced, but still low, conductivities reported for hydrous olivine and orthopyroxene at levels of water reported for Kaapvaal xenoliths. The electrical lithosphere around the Kimberley and Premier diamond mines is thinner than the maximum craton thickness found between Kimberley and Johannesburg/Pretoria. The mantle beneath the Bushveld Complex is highly conducting at depths around 60 km. Possible explanations for these high conductivities include graphite or sulphide and/or iron metals associated with the Bushveld magmatic event. We suggest that one of these conductive phases (most likely melt-related sulphides) could electrically connect iron-rich garnets in a garnet-rich eclogitic composition associated with a relict subduction slab.
  • Preprint
    Area selection for diamonds using magnetotellurics : examples from southern Africa
    ( 2009-06-05) Jones, Alan G. ; Evans, Rob L. ; Muller, Mark R. ; Hamilton, Mark P. ; Miensopust, Marion P. ; Garcia, Xavier ; Cole, Patrick ; Ngwisanyi, Tiyapo ; Hutchins, David A. ; Fourie, C. J. S. ; Jelsma, Hielke ; Aravanis, Theo ; Pettit, Wayne ; Webb, Susan J. ; Webb, Jan ; Collins, Louise ; Hogg, Colin ; Horan, Clare ; Spratt, Jessica ; Wallace, Gerry ; Chave, Alan D. ; Cole, Janine ; Stettler, Raimund ; Tshoso, G. ; Mountford, Andy ; Cunion, Ed ; Khoza, T. David ; Share, Pieter-Ewald ; SAMTEX Team
    Southern Africa, particularly the Kaapvaal Craton, is one of the world’s best natural laboratories for studying the lithospheric mantle given the wealth of xenolith and seismic data that exist for it. The Southern African Magnetotelluric Experiment (SAMTEX) was launched to complement these databases and provide further constraints on physical parameters and conditions by obtaining information about electrical conductivity variations laterally and with depth. Initially it was planned to acquire magnetotelluric data on profiles spatially coincident with the Kaapvaal Seismic Experiment, however with the addition of seven more partners to the original four through the course of the experiment, SAMTEX was enlarged from two to four phases of acquisition, and extended to cover much of Botswana and Namibia. The complete SAMTEX dataset now comprises MT data from over 675 distinct locations in an area of over one million square kilometres, making SAMTEX the largest regional-scale MT experiment conducted to date. Preliminary images of electrical resistivity and electrical resistivity anisotropy at 100 km and 200 km, constructed through approximate one-dimensional methods, map resistive regions spatially correlated with the Kaapvaal, Zimbabwe and Angola Cratons, and more conductive regions spatially associated with the neighbouring mobile belts and the Rehoboth Terrain. Known diamondiferous kimberlites occur primarily on the boundaries between the resistive or isotropic regions and conductive or anisotropic regions. Comparisons between the resistivity image maps and seismic velocities from models constructed through surface wave and body wave tomography show spatial correlations between high velocity regions that are resistive, and low velocity regions that are conductive. In particular, the electrical resistivity of the sub-continental lithospheric mantle of the Kaapvaal Craton is determined by its bulk parameters, so is controlled by a bulk matrix property, namely temperature, and to a lesser degree by iron content and composition, and is not controlled by contributions from interconnected conducting minor phases, such as graphite, sulphides, iron oxides, hydrous minerals, etc. This makes quantitative correlations between velocity and resistivity valid, and a robust regression between the two gives an approximate relationship of Vs [m/s] = 0.045*log(resistivity [ohm.m]).
  • Article
    Lithospheric structure of an Archean craton and adjacent mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data : example from southern Congo craton in northern Namibia
    (John Wiley & Sons, 2013-08-09) Khoza, T. David ; Jones, Alan G. ; Muller, Mark R. ; Evans, Rob L. ; Miensopust, Marion P. ; Webb, Susan J.
    Archean cratons, and the stitching Proterozoic orogenic belts on their flanks, form an integral part of the Southern Africa tectonic landscape. Of these, virtually nothing is known of the position and thickness of the southern boundary of the composite Congo craton and the Neoproterozoic Pan-African orogenic belt due to thick sedimentary cover. We present the first lithospheric-scale geophysical study of that cryptic boundary and define its geometry at depth. Our results are derived from two-dimensional (2-D) and three-dimensional (3-D) inversion of magnetotelluric data acquired along four semiparallel profiles crossing the Kalahari craton across the Damara-Ghanzi-Chobe belts (DGC) and extending into the Congo craton. Two-dimensional and three-dimensional electrical resistivity models show significant lateral variation in the crust and upper mantle across strike from the younger DGC orogen to the older adjacent cratons. We find Damara belt lithosphere to be more conductive and significantly thinner than that of the adjacent Congo craton. The Congo craton is characterized by very thick (to depths of  250 km) and resistive (i.e., cold) lithosphere. Resistive upper crustal features are interpreted as caused by igneous intrusions emplaced during Pan-African magmatism. Graphite-bearing calcite marbles and sulfides are widespread in the Damara belt and account for the high crustal conductivity in the Central Zone. The resistivity models provide new constraints on the southern extent of the greater Congo craton and suggest that the current boundary drawn on geological maps needs revision and that the craton should be extended further south.
  • Article
    Velocity-conductivity relations for cratonic lithosphere and their application : example of Southern Africa
    (John Wiley & Sons, 2013-04-05) Jones, Alan G. ; Fishwick, Stewart ; Evans, Rob L. ; Muller, Mark R. ; Fullea, Javier
    Seismic velocity is a function of bulk vibrational properties of the media, whereas electrical resistivity is most often a function of transport properties of an interconnected minor phase. In the absence of a minor conducting phase then the two should be inter-relatable primarily due to their sensitivity to temperature variation. We develop expressions between shear wave velocity and resistivity for varying temperature, composition, and water content based on knowledge from two kimberlite fields: Jagersfontein (Kaapvaal Craton) and Gibeon (Rehoboth Terrane). We test the expressions through comparison between a new high-resolution regional seismic model, derived from surface wave inversion of earthquake data from Africa and the surrounding regions, and a new electrical image from magnetotelluric (MT) data recorded in SAMTEX (Southern African Magnetotelluric Experiment). The data-defined robust linear regression between the two is found to be statistically identical to the laboratory-defined expression for 40 wt ppm water in olivine. Cluster analysis defines five clusters that are all geographically distinct and tectonically relate to (i) fast, cold, and variably wet Kaapvaal Craton, (ii) fast and wet central Botswana, (iii) slow, warm, and wet Rehoboth Terrane, (iv) moderately fast, cold, and very dry southernmost Angola Craton, and (v) slow, warm, and somewhat dry Damara Belt. From the linear regression expression and the MT image we obtain predicted seismic velocity at 100 km and compare it with that from seismic observations. The differences between the two demonstrate that the linear relationship between Vs and resistivity is appropriate for over 80% of Southern Africa. Finally, using the regressions for varying water content, we infer water content in olivine across Southern Africa.
  • Article
    Robust magnetotelluric inversion
    (Oxford University Press on behalf of The Royal Astronomical Society, 2014-01-02) Matsuno, Tetsuo ; Chave, Alan D. ; Jones, Alan G. ; Muller, Mark R. ; Evans, Rob L.
    A robust magnetotelluric (MT) inversion algorithm has been developed on the basis of quantile-quantile (q-q) plotting with confidence band and statistical modelling of inversion residuals for the MT response function (apparent resistivity and phase). Once outliers in the inversion residuals are detected in the q-q plot with the confidence band and the statistical modelling with the Akaike information criterion, they are excluded from the inversion data set and a subsequent inversion is implemented with the culled data set. The exclusion of outliers and the subsequent inversion is repeated until the q-q plot is substantially linear within the confidence band, outliers predicted by the statistical modelling are unchanged from the prior inversion, and the misfit statistic is unchanged at a target level. The robust inversion algorithm was applied to synthetic data generated from a simple 2-D model and observational data from a 2-D transect in southern Africa. Outliers in the synthetic data, which come from extreme values added to the synthetic responses, produced spurious features in inversion models, but were detected by the robust algorithm and excluded to retrieve the true model. An application of the robust inversion algorithm to the field data demonstrates that the method is useful for data clean-up of outliers, which could include model as well as data inconsistency (for example, inability to fit a 2-D model to a 3-D data set), during inversion and for objectively obtaining a robust and optimal model. The present statistical method is available irrespective of the dimensionality of target structures (hence 2-D and 3-D structures) and of isotropy or anisotropy, and can operate as an external process to any inversion algorithm without modifications to the inversion program.