Markewitz Daniel

No Thumbnail Available
Last Name
Markewitz
First Name
Daniel
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Runoff sources and land cover change in the Amazon : an end-member mixing analysis from small watersheds
    ( 2011-03) Neill, Christopher ; Chaves, Joaquin E. ; Biggs, Trent ; Deegan, Linda A. ; Elsenbeer, Helmut ; Figueiredo, Ricardo O. ; Germer, Sonja ; Johnson, Mark S. ; Lehmann, Johannes ; Markewitz, Daniel ; Piccolo, Marisa C.
    The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end member mixing analysis (EMMA) to ten small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27 to 28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45 to 57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60 to 89% in pasture watersheds <10 ha to 0% in forest and 27 to 28% in pastures in watersheds >100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.
  • Preprint
    Discharge–calcium concentration relationships in streams of the Amazon and Cerrado of Brazil : soil or land use controlled
    ( 2011-02) Markewitz, Daniel ; Lamon, E. Conrad ; Bustamante, Mercedes C. ; Chaves, Joaquin E. ; Figueiredo, Ricardo O. ; Johnson, Mark S. ; Krusche, Alex V. ; Neill, Christopher ; Silva, Jose S. O.
    Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log10discharge-log10Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (<1 to >106 ha) and discharge (10-5.7 to 103.2 m3 sec-1). Linear regressions of log10Ca versus log10discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.