Straneo Fiamma

No Thumbnail Available
Last Name
Straneo
First Name
Fiamma
ORCID
0000-0002-1735-2366

Search Results

Now showing 1 - 20 of 69
  • Article
    BedMachine v3 : complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
    (John Wiley & Sons, 2017-11-01) Morlighem, Mathieu ; Williams, Chris N. ; Rignot, Eric ; An, Lu ; Arndt, Jan Erik ; Bamber, Jonathan L. ; Catania, Ginny ; Chauché, Nolwenn ; Dowdeswell, Julian ; Dorschel, Boris ; Fenty, Ian ; Hogan, Kelly ; Howat, Ian M. ; Hubbard, Alun ; Jakobsson, Martin ; Jordan, Tom M. ; Kjeldsen, Kristian K. ; Millan, Romain ; Mayer, Larry A. ; Mouginot, Jeremie ; Noël, Brice P. Y. ; O’Cofaigh, Colm ; Palmer, Steven ; Rysgaard, Soren ; Seroussi, Helene ; Siegert, Martin J. ; Slabon, Patricia ; Straneo, Fiamma ; Van den Broeke, Michiel ; Weinrebe, W. ; Wood, Michael ; Zinglersen, Karl Brix
    Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
  • Article
    Heat and freshwater transport through the central Labrador Sea
    (American Meteorological Society, 2006-04) Straneo, Fiamma
    The seasonal and interannual variations in the export of Labrador Sea Water (LSW), and in the heat and freshwater transport through the central Labrador Sea, are examined for two different periods: from 1964 to 1974, using Ocean Weather Station Bravo data, and from 1996 to 2000, using data collected from profiling floats. A typical seasonal cycle involves a 300-m thickening of LSW (convection) followed by an equivalent thinning (restratification). Restratification is characterized by a drift of properties toward boundary current values that is indicative of a vigorous lateral exchange. The net result is a convergence of heat and salt, between 200 and 700 m, that balances the net surface heat loss to the atmosphere and partially offsets the surface freshwater accumulation due to surface, lateral exchange. Interannual variations in the export of LSW can be explained by taking into account changes in the central Labrador Sea–boundary current density gradient, which governs the lateral exchange. Interannual variations in how much heat is converged into the region, on the other hand, mostly reflect changes in the temperature of LSW. This only partly explains, however, the increased convergence of heat that occurs during the late 1990s. In years in which convection does not occur, restratification trends continue throughout the entire year, albeit at a reduced rate.
  • Article
    Structure and surface properties of eddies in the southeast Pacific Ocean
    (John Wiley & Sons, 2013-05-07) Holte, James W. ; Straneo, Fiamma ; Moffat, Carlos F. ; Weller, Robert A. ; Farrar, J. Thomas
    A number of studies have posited that coastally generated eddies could cool the southeast Pacific Ocean (SEP) by advecting cool, upwelled waters offshore. We examine this mechanism by characterizing the upper-ocean properties of mesoscale eddies in the SEP with a variety of observations and by estimating the surface-layer eddy heat flux divergence with satellite data. Cyclonic and anticyclonic eddies observed during two cruises featured deep positive salinity anomalies along the 26.5 kg m−3isopycnal, indicating that the eddies had likely trapped and transported coastal waters offshore. The cyclonic eddies observed during the cruises were characterized by shoaling isopycnals in the upper 200 m and cool near-surface temperature anomalies, whereas the upper-ocean structure of anticyclonic eddies was more variable. Using a variety of large-scale observations, including Argo float profiles, drifter records, and satellite sea surface temperature fields, we show that, relative to mean conditions, cyclonic eddies are associated with cooler surface temperatures and that anticyclonic eddies are associated with warmer surface temperatures. Within each data set, the mean eddy surface temperature anomalies are small and of approximately equal magnitude but opposite sign. Eddy statistics drawn from satellite altimetry data reveal that cyclonic and anticyclonic eddies occur with similar frequency and have similar average radii in the SEP. A satellite-based estimate of the surface-layer eddy heat flux divergence, while large in coastal regions, is small when averaged over the SEP, suggesting that eddies do not substantially contribute to cooling the surface layer of the SEP.
  • Preprint
    Observations of fresh, anticyclonic eddies in the Hudson Strait outflow
    ( 2010-07) Sutherland, David A. ; Straneo, Fiamma ; Lentz, Steven J. ; St-Laurent, Pierre
    The waters that flow out through Hudson Strait, a coastal system that connects Hudson Bay with the Labrador Sea, constitute the third largest freshwater contribution to the northern North Atlantic. Recent studies have documented the mean structure and transport of the outflow, as well as highlighting significant variability on synoptic scales (days–week). This study examines the outflow’s variability on these synoptic scales through the use of observations collected by a mooring array from 2005-2006. We focus on the mechanisms that cause the freshwater export to be concentrated in a series of discrete pulses during the fall/winter season. We find that the pulses occur once every 4.4 days on average and are associated with anticyclonic, surface-trapped eddies propagated through the strait by the mean outflow. Their occurrence is related to the passage of storms across Hudson Bay, although local instability processes also play a role in their formation. The eddies are responsible for approximately 40% of the mean volume transport and 50% of the mean freshwater transport out of the strait. We discuss the implications of this freshwater release mechanism on the delivery of nutrient-rich and highly stratified waters to the Labrador shelf, a productive region south of Hudson Strait.
  • Article
    On the effect of a sill on dense water formation in a marginal sea
    (Sears Foundation for Marine Research, 2008-05) Iovino, Doroteaciro ; Straneo, Fiamma ; Spall, Michael A.
    The properties of water mass transformation in a semi-enclosed basin, separated from the open ocean by a sill and subject to surface cooling, are analyzed both theoretically and numerically using an ocean general circulation model. This study extends previous studies of convection in a marginal sea to the case with a sill. The sill has a strong impact on both the properties of the dense water formed in the interior and on those of the waters flowing out the marginal sea. It results in a colder interior and colder outflow compared to the case with no sill. Dynamically, this is explained by considering that the sill limits the geostrophic contours over which the open ocean/marginal sea exchange can occur. The impact of the sill, however, is not simply limited to a topographic constriction; instead the sill also decreases the stability of the boundary current, which, in turn, results in relatively large heat flux into the interior and colder outflow. The theories that relate the properties of the dense waters formed in the interior, and those of the outflow, are modified to include the impact of the sill. These are found to compare well with the numerical simulations and provide a useful tool for the interpretation of these results. These idealized simulations capture the basic features of the water mass transformation processes in the Nordic Seas and, in particular, provide a dynamical explanation for the difference between the dense waters formed and the source of the overflows water.
  • Article
    Spreading of Greenland meltwaters in the ocean revealed by noble gases
    (John Wiley & Sons, 2015-09-30) Beaird, Nicholas ; Straneo, Fiamma ; Jenkins, William J.
    We present the first noble gas observations in a proglacial fjord in Greenland, providing an unprecedented view of surface and submarine melt pathways into the ocean. Using Optimum Multiparameter Analysis, noble gas concentrations remove large uncertainties inherent in previous studies of meltwater in Greenland fjords. We find glacially modified waters with submarine melt concentrations up to 0.66 ± 0.09% and runoff 3.9 ± 0.29%. Radiogenic enrichment of Helium enables identification of ice sheet near-bed melt (0.48 ± 0.08%). We identify distinct regions of meltwater export reflecting heterogeneous melt processes: a surface layer of both runoff and submarine melt and an intermediate layer composed primarily of submarine melt. Intermediate ocean waters carry the majority of heat to the fjords' glaciers, and warmer deep waters are isolated from the ice edge. The average entrainment ratio implies that ocean water masses are upwelled at a rate 30 times the combined glacial meltwater volume flux.
  • Article
    Katabatic wind-driven exchange in fjords
    (John Wiley & Sons, 2017-10-28) Spall, Michael A. ; Jackson, Rebecca H. ; Straneo, Fiamma
    The general issue of katabatic wind-driven exchange in fjords is considered using an idealized numerical model, theory, and observations. Two regimes are identified. For fjords narrower than a viscous boundary layer width, the exchange is limited by a balance between wind and friction in lateral boundary layers. For the nonlinear viscous parameterization used here, this boundary layer thickness depends on the properties of the fjord, such as stratification and length, as well as on the wind stress and numerical parameters such as grid spacing and an empirical constant. For wider fjords typical of east Greenland, the balance is primarily between wind, the along-fjord pressure gradient, and acceleration, in general agreement with previous two-layer nonrotating theories. It is expected that O(10%) of the surface layer will be flushed out of the fjord by a single wind event. Application of the idealized model to a typical katabatic wind event produces outflowing velocities that are in general agreement with observations in Sermilik Fjord, a large glacial fjord in southeast Greenland. The presence of a sill has only a minor influence on the exchange until the sill penetrates over most of the lower layer thickness, in which cases the exchange is reduced. It is concluded that the multiple katabatic wind events per winter that are experienced by the fjords along east Greenland represent an important mechanism of exchange between the fjord and shelf, with implications for the renewal of warm, salty waters at depth and for the export of glacial freshwater in the upper layer.
  • Article
    Moored observations of synoptic and seasonal variability in the East Greenland Coastal Current
    (John Wiley & Sons, 2014-12-23) Harden, Benjamin E. ; Straneo, Fiamma ; Sutherland, David A.
    We present a year-round assessment of the hydrographic variability within the East Greenland Coastal Current on the Greenland shelf from five synoptic crossings and 4 years of moored hydrographic data. From the five synoptic sections the current is observed as a robust, surface intensified flow with a total volume transport of 0.66 ± 0.18 Sv and a freshwater transport of 42 ± 12 mSv. The moorings showed heretofore unobserved variability in the abundance of Polar and Atlantic water masses in the current on synoptic scales. This is exhibited as large vertical displacement of isotherms (often greater than 100 m). Seasonally, the current is hemmed into the coast during the fall by a full depth Atlantic Water layer that has penetrated onto the inner shelf. The Polar Water layer in the current then thickens through the winter and spring seasons increasing the freshwater content in the current; the timing implies that this is probably driven by the seasonally varying export of freshwater from the Arctic and not the local runoff from Greenland. The measured synoptic variability is enhanced during the winter and spring period due to a lower halocline and a concurrent enhancement in the along-coast wind speed. The local winds force much of the high-frequency variability in a manner consistent with downwelling, but variability distinct from downwelling is also visible.
  • Article
    Observations of water mass transformation and eddies in the Lofoten basin of the Nordic Seas
    (American Meteorological Society, 2015-06) Richards, Clark G. ; Straneo, Fiamma
    The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy loss. In this study, hydrographic and current measurements collected from a mooring deployed in the Lofoten basin from July 2010 to September 2012 are used to describe water mass transformation and the mesoscale eddy field. Winter mixed layer depths (MLDs) are observed to reach approximately 400 m, with larger MLDs and denser properties resulting from the colder 2010 winter. A heat budget of the upper water column requires lateral input, which balances the net annual heat loss of ~80 W m−2. The lateral flux is a result of mesoscale eddies, which dominate the velocity variability. Eddy velocities are enhanced in the upper 1000 m, with a barotropic component that reaches the bottom. Detailed examination of two eddies, from April and August 2012, highlights the variability of the eddy field and eddy properties. Temperature and salinity properties of the April eddy suggest that it originated from the slope current but was ventilated by surface fluxes. The properties within the eddy were similar to those of the mode water, indicating that convection within the eddies may make an important contribution to water mass transformation. A rough estimate of eddy flux per unit boundary current length suggests that fluxes in the Lofoten basin are larger than in the Labrador Sea because of the enhanced boundary current–interior density difference.
  • Article
    Overturning in the Subpolar North Atlantic Program : a new international ocean observing system
    (American Meteorological Society, 2017-04-24) Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke Femke ; de Steur, Laura ; deYoung, Brad ; Fischer, Jürgen ; Gary, Stefan F. ; Greenan, Blair J. W. ; Heimbach, Patrick ; Holliday, Naomi Penny ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Johnson, Helen L. ; Karstensen, Johannes ; Li, Feili ; Lin, Xiaopei ; Mackay, Neill ; Marshall, David P. ; Mercier, Herlé ; Myers, Paul G. ; Pickart, Robert S. ; Pillar, Helen R. ; Straneo, Fiamma ; Thierry, Virginie ; Weller, Robert A. ; Williams, Richard G. ; Wilson, Christopher G. ; Yang, Jiayan ; Zhao, Jian ; Zika, Jan D.
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
  • Article
    Arrival of new great salinity anomaly weakens convection in the Irminger Sea
    (American Geophysical Union, 2022-06-06) Biló, Tiago C. ; Straneo, Fiamma ; Holte, James W. ; Le Bras, Isabela A.
    The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.
  • Article
    Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters
    (John Wiley & Sons, 2014-12-11) Sutherland, David A. ; Roth, George E. ; Hamilton, Gordon S. ; Mernild, Sebastian H. ; Stearns, Leigh A. ; Straneo, Fiamma
    Large, deep-keeled icebergs are ubiquitous in Greenland's outlet glacial fjords. Here we use the movement of these icebergs to quantify flow variability in Sermilik Fjord, southeast Greenland, from the ice mélange through the fjord to the shelf. In the ice mélange, a proglacial mixture of sea ice and icebergs, we find that icebergs consistently track the glacier speed, with slightly faster speeds near terminus and episodic increases due to calving events. In the fjord, icebergs accurately capture synoptic circulation driven by both along-fjord and along-shelf winds. Recirculation and in-/out-fjord variations occur throughout the fjord more frequently than previously reported, suggesting that across-fjord velocity gradients cannot be ignored. Once on the shelf, icebergs move southeastward in the East Greenland Coastal Current, providing wintertime observations of this freshwater pathway.
  • Article
    Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea : lessons from the Great Salinity Anomaly years 1968–71
    (American Meteorological Society, 2012-10-01) Gelderloos, Renske ; Straneo, Fiamma ; Katsman, Caroline A.
    From 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air–sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
  • Article
    Mean conditions and seasonality of the West Greenland boundary current system near Cape Farewell
    (American Meteorological Society, 2020-09-18) Pacini, Astrid ; Pickart, Robert S. ; Bahr, Frank B. ; Torres, Daniel J. ; Ramsey, Andree L. ; Holte, James W. ; Karstensen, Johannes ; Oltmanns, Marilena ; Straneo, Fiamma ; Le Bras, Isabela Astiz ; Moore, G. W. K. ; de Jong, Marieke Femke
    The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
  • Preprint
    The outflow from Hudson Strait and its contribution to the Labrador Current
    ( 2007-11) Straneo, Fiamma ; Saucier, Francois J.
    Hudson Strait delivers a large amount of fresh water to the subpolar North Atlantic due to a large riverine input into the upstream Hudson Bay System and to the rerouting of Arctic Ocean waters. The fresh waters flowing out of Hudson Strait feed the Labrador Current, a current that has a significant impact on the climate and ecosystem of the entire northeastern seaboard. The lack of measurements from the strait have, until recently, made it difficult to determine the relative contribution of Hudson Strait to the properties and variability of the Labrador Current compared to other sources. This study describes the first year round observations of the outflow as obtained from a moored array deployed midstrait from August 2004 to 2005, and from a highresolution hydrographic section conducted in September of 2005. The outflow from Hudson Strait has the structure of a buoyant boundary current spread across the sloping topography of its southern edge. The variability in the flow is dominated by the extreme semidiurnal tides and by vigorous, mostly barotropic, fluctuations over several days. The fresh water export is seasonally concentrated between June and March with a peak in NovemberDecember, consistent with the seasonal riverine input and seaice melt. It is highly variable on weekly timescales due to synchronous salinity and velocity variations. The estimated volume and liquid fresh water transports during 20042005 are respectively of 11.2 Sv and 7888 (2829) mSv relative to a salinity of 34.8 (33). This implies that the Hudson Strait outflow accounts for approximately 15% of the volume and 50% of the fresh water transports of the Labrador Current. This larger than previously estimated contribution is partially due to the recycling, within the Hudson Bay System, of relatively fresh waters that flow into Hudson Strait, along its northern edge. It is speculated that the source of this inflow is the outflow from Davis Strait.
  • Article
    The role of wave dynamics and small-scale topography for downslope wind events in southeast Greenland
    (American Meteorological Society, 2015-07) Oltmanns, Marilena ; Straneo, Fiamma ; Seo, Hyodae ; Moore, G. W. K.
    In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
  • Article
    A laboratory study of iceberg side melting in vertically sheared flows
    (American Meteorological Society, 2018-06-12) FitzMaurice, Anna ; Cenedese, Claudia ; Straneo, Fiamma
    An earlier study indicates that the side melting of icebergs subject to vertically homogeneous horizontal velocities is controlled by two distinct regimes, which depend on the melt plume behavior and produce a nonlinear dependence of side melt rate on velocity. Here, we extend this study to consider ice blocks melting in a two-layer vertically sheared flow in a laboratory setting. It is found that the use of the vertically averaged flow speed in current melt parameterizations gives an underestimate of the submarine side melt rate, in part because of the nonlinearity of the dependence of the side melt rate on flow speed but also because vertical shear in the horizontal velocity profile fundamentally changes the flow splitting around the ice block and consequently the velocity felt by the ice surface. An observational record of 90 icebergs in a Greenland fjord suggests that this effect could produce an average underestimate of iceberg side melt rates of 21%.
  • Article
    Characteristic depths, fluxes and timescales for Greenland’s tidewater glacier fjords from subglacial discharge‐driven upwelling during summer
    (American Geophysical Union, 2022-03-02) Slater, Donald A. ; Carroll, Dustin ; Oliver, Hilde ; Hopwood, Mark J. ; Straneo, Fiamma ; Wood, Michael ; Willis, Joshua K. ; Morlighem, Mathieu
    Greenland's glacial fjords are a key bottleneck in the earth system, regulating exchange of heat, freshwater and nutrients between the ice sheet and ocean and hosting societally important fisheries. We combine recent bathymetric, atmospheric, and oceanographic data with a buoyant plume model to show that summer subglacial discharge from 136 tidewater glaciers, amounting to 0.02 Sv of freshwater, drives 0.6–1.6 Sv of upwelling. Bathymetric analysis suggests that this is sufficient to renew most major fjords within a single summer, and that these fjords provide a path to the continental shelf that is deeper than 200 m for two-thirds of the glaciers. Our study provides a first pan-Greenland inventory of tidewater glacier fjords and quantifies regional and ice sheet-wide upwelling fluxes. This analysis provides important context for site-specific studies and is a step toward implementing fjord-scale heat, freshwater and nutrient fluxes in large-scale ice sheet and climate models.
  • Article
    Impact of periodic intermediary flows on submarine melting of a Greenland glacier
    (John Wiley & Sons, 2014-10-24) Sciascia, R. ; Cenedese, Claudia ; Nicolì, D. ; Heimbach, Patrick ; Straneo, Fiamma
    The submarine melting of a vertical glacier front, induced by an intermediary circulation forced by periodic density variations at the mouth of a fjord, is investigated using a nonhydrostatic ocean general circulation model and idealized laboratory experiments. The idealized configurations broadly match that of Sermilik Fjord, southeast Greenland, a largely two layers system characterized by strong seasonal variability of subglacial discharge. Consistent with observations, the numerical results suggest that the intermediary circulation is an effective mechanism for the advection of shelf anomalies inside the fjord. In the numerical simulations, the advection mechanism is a density intrusion with a velocity which is an order of magnitude larger than the velocities associated with a glacier-driven circulation. In summer, submarine melting is mostly influenced by the discharge of surface runoff at the base of the glacier and the intermediary circulation induces small changes in submarine melting. In winter, on the other hand, submarine melting depends only on the water properties and velocity distribution at the glacier front. Hence, the properties of the waters advected by the intermediary circulation to the glacier front are found to be the primary control of the submarine melting. When the density of the intrusion is intermediate between those found in the fjord's two layers, there is a significant reduction in submarine melting. On the other hand, when the density is close to that of the bottom layer, only a slight reduction in submarine melting is observed. The numerical results compare favorably to idealized laboratory experiments with a similar setup.
  • Article
    Icebergs and sea ice detected with inverted echo sounders
    (American Meteorological Society, 2015-05) Andres, Magdalena ; Silvano, Alessandro ; Straneo, Fiamma ; Watts, D. Randolph
    A 1-yr experiment using a pressure-sensor-equipped inverted echo sounder (PIES) was conducted in Sermilik Fjord in southeastern Greenland (66°N, 38°E) from August 2011 to September 2012. Based on these high-latitude data, the interpretation of PIESs’ acoustic travel-time records from regions that are periodically ice covered were refined. In addition, new methods using PIESs for detecting icebergs and sea ice and for estimating iceberg drafts and drift speeds were developed and tested. During winter months, the PIES in Sermilik Fjord logged about 300 iceberg detections and recorded a 2-week period in early March of land-fast ice cover over the instrument site, consistent with satellite synthetic aperture radar (SAR) imagery. The deepest icebergs in the fjord were found to have keel depths greater than approximately 350 m. Average and maximum iceberg speeds were approximately 0.2 and 0.5 m s−1, respectively. The maximum tidal range at the site was ±1.8 m and during neap tides the range was ±0.3 m, as shown by the PIES’s pressure record.