Clayton Sophie A.

No Thumbnail Available
Last Name
Clayton
First Name
Sophie A.
ORCID

Search Results

Now showing 1 - 7 of 7
  • Article
    Horizontal advection, diffusion, and plankton spectra at the sea surface
    (American Geophysical Union, 2009-02-04) Bracco, Annalisa ; Clayton, Sophie A. ; Pasquero, Claudia
    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, because of both a small number of suitable observations and an incomplete understanding of the properties of reactive tracers in turbulent media. It has been suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, the relative distributions of sea surface temperature and phytoplankton has been attributed to small-scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton, and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate (1) the impact of the spatial scale of tracer supply, (2) the role played by coherent eddies on the distribution of tracers with different Rt, and (3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.
  • Article
    High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy
    (American Geophysical Union, 2019-06-10) Mulholland, Margaret R. ; Bernhardt, Peter W. ; Widner, Brittany ; Selden, Corday ; Chappell, Phoebe Dreux ; Clayton, Sophie A. ; Mannino, Antonio ; Hyde, Kimberly J. W.
    Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.
  • Article
    Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology
    (Frontiers Media, 2022-01-10) Clayton, Sophie A. ; Alexander, Harriet ; Graff, Jason R. ; Poulton, Nicole J. ; Thompson, Luke R. ; Benway, Heather M. ; Boss, Emmanuel S. ; Martiny, Adam C.
    In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.
  • Thesis
    Physical influences on phytoplankton ecology : models and observations
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2013-06) Clayton, Sophie A.
    The physical environment in the oceans dictates not only how phytoplankton cells are dispersed and their populations intermingled, but also mediates the supply of nutrients to the surface mixed layer. In this thesis I explore both of these aspects of the interaction between phytoplankton ecology and ocean physics, and have approached this topic in two distinct but complementary ways, working with a global ocean ecosystem model, and collecting data at sea. In the first half of the thesis, I examine the role of mesoscale physical features in shaping phytoplankton community structure and influencing rates of primary production. I compare the output of a complex marine ecosystem model coupled to coarse resolution and eddy-permitting physical models. Explicitly resolving eddies resulted in marked regional variations in primary production, zooplankton and phytoplankton biomass. The same phytoplankton phenotypes persisted in both cases, and were dominant in the same regions. Global phytoplankton diversity was unchanged. However, levels of local phytoplankton diversity were markedly different, with a large increase in local diversity in the higher resolution model. Increased diversity could be attributed to a combination of enhanced dispersal, environmental variability and nutrient supply in the higher resolution model. Diversity ”hotspots” associated with western boundary currents and coastal upwelling zones are sustained through a combination of all of these factors. In the second half of the thesis I describe the results of a fine scale ecological and biogeochemical survey of the Kuroshio Extension Front. I found fine scale patterns in physical, chemical and biological properties that can be linked back to both the large scale horizontal and smaller scale vertical physical dynamics of the study region. A targeted genomic analysis of samples focused on the ecology of the picoeukaryote Ostreococcus clade distributions strongly supports the model derived hypotheses about the mechanisms supporting diversity hotspots. Strikingly, two distinct clades of Ostreococcus co-occur in more than half of the samples. A ”hotspot” of Ostreococcus diversity appears to be supported by a confluence of water masses containing either clade, as well as a local nutrient supply at the front and the mesoscale variability of the region.
  • Article
    Global perspectives on observing ocean boundary current systems
    (Frontiers Media, 2019-08-08) Todd, Robert E. ; Chavez, Francisco P. ; Clayton, Sophie A. ; Cravatte, Sophie ; Goes, Marlos Pereira ; Graco, Michelle ; Lin, Xiaopei ; Sprintall, Janet ; Zilberman, Nathalie ; Archer, Matthew ; Arístegui, Javier ; Balmaseda, Magdalena A. ; Bane, John M. ; Baringer, Molly O. ; Barth, John A. ; Beal, Lisa M. ; Brandt, Peter ; Calil, Paulo H. R. ; Campos, Edmo ; Centurioni, Luca R. ; Chidichimo, Maria Paz ; Cirano, Mauro ; Cronin, Meghan F. ; Curchitser, Enrique N. ; Davis, Russ E. ; Dengler, Marcus ; deYoung, Brad ; Dong, Shenfu ; Escribano, Ruben ; Fassbender, Andrea ; Fawcett, Sarah E. ; Feng, Ming ; Goni, Gustavo J. ; Gray, Alison R. ; Gutiérrez, Dimitri ; Hebert, Dave ; Hummels, Rebecca ; Ito, Shin-ichi ; Krug, Marjolaine ; Lacan, Francois ; Laurindo, Lucas ; Lazar, Alban ; Lee, Craig M. ; Lengaigne, Matthieu ; Levine, Naomi M. ; Middleton, John ; Montes, Ivonne ; Muglia, Michael ; Nagai, Takeyoshi ; Palevsky, Hilary I. ; Palter, Jaime B. ; Phillips, Helen E. ; Piola, Alberto R. ; Plueddemann, Albert J. ; Qiu, Bo ; Rodrigues, Regina ; Roughan, Moninya ; Rudnick, Daniel L. ; Rykaczewski, Ryan R. ; Saraceno, Martin ; Seim, Harvey E. ; Sen Gupta, Alexander ; Shannon, Lynne ; Sloyan, Bernadette M. ; Sutton, Adrienne J. ; Thompson, LuAnne ; van der Plas, Anja K. ; Volkov, Denis L. ; Wilkin, John L. ; Zhang, Dongxiao ; Zhang, Linlin
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
  • Article
    Nitrogen fixation at the Mid‐Atlantic Bight Shelfbreak and transport of newly fixed nitrogen to the Slope Sea
    (American Geophysical Union, 2024-04-05) Selden, Corday R. ; Mulholland, Margaret R. ; Crider, Katie E. ; Clayton, Sophie A. ; Macias-Tapia, Alfonso ; Bernhardt, Peter W. ; McGillicuddy, Dennis J. ; Zhang, Weifeng Gordon ; Chappell, Phoebe Dreux
    Continental shelves contribute a large fraction of the ocean's new nitrogen (N) via N2 fixation; yet, we know little about how physical processes at the ocean's margins shape diazotroph biogeography and activity. Here, we test the hypothesis that frontal mixing favors N2 fixation at the Mid-Atlantic Bight shelfbreak. Using the 15N2 bubble release method, we measured N2 fixation rates on repeat cross-frontal transects in July 2019. N2 fixation rates in shelf waters (median = 5.42 nmol N L−1 d−1) were higher than offshore (2.48 nmol N L−1 d−1) but did not significantly differ front frontal waters (8.42 nmol N L−1 d−1). However, specific N2 uptake rates, indicative of the relative contribution of diazotroph-derived N to particulate N turnover, were significantly higher in frontal waters, suggesting that diazotroph-derived N is of greater importance in supporting productivity there. This study furthered captured an ephemeral shelf-water streamer, which resulted from the impingement of a warm core ring on the shelf. The streamer transported shelf-water diazotrophs (including UCYN-A and Richelia spp., as assessed by qPCR) offshore with sustained high N2 fixation rates. This feature injected >50 metric tons d−1 of newly fixed N to the Slope Sea—a rate equivalent to ∼4% of the total N flux estimated for the entire Mid-Atlantic Bight. As intrusions of Gulf Stream meanders and eddies onto the shelf are increasing in frequency due to climate change, episodic lateral fluxes of new N into the Slope Sea may become increasingly important to regional budgets and ecosystem productivity.
  • Working Paper
    Daily to decadal ecological forecasting along North American coastlines
    (Woods Hole Oceangraphic Institution, 2024-12-16) Capotondi, Antonietta ; Coles, Victoria J. ; Clayton, Sophie A. ; Friedrichs, Marjorie A. M. ; Gierach, Michelle ; Miller, Arthur J. ; Stock, Charles A.
    Coastal areas share unique intersections of large-scale climate variability and local hydrology, wetland, benthic and pelagic ecosystems, and anthropogenic pressures. Forecasting of harmful environmental conditions for planning, adaptation, and mitigation purposes is both complex and urgently needed. Ecological forecasting is the qualitative or quantitative projection of biogeochemical, organismal or ecosystem state variables and their drivers on timescales that can range from “now” to decades from now. Estimating hypoxia in Chesapeake Bay today, predicting acidity conditions in the Northeast Pacific in a few months, or projecting the depth of the Bering Sea nutricline in 2075 are all ecological forecasts relevant to planning, adaptation, and mitigation efforts. In 2022, the US CLIVAR and Ocean Carbon & Biogeochemistry (OCB) Programs convened a joint workshop to advance the development of US ecological forecasting. The workshop goals were to 1) identify sources of predictability of physical quantities relevant for marine ecosystems along US coastlines; 2) assess the observational needs of forecast systems and limitations due to gaps in understanding; and 3) promote the development of dynamical and statistical models suitable to meet the forecasting requirements. About 80 participants from over 40 US and international institutions joined this hybrid workshop for plenary talks and breakout discussions. Participants represented a diversity of career stages across academic institutions, government agencies, and non-government organizations. By working together, they collectively identified a path forward for a coordinated US ecological forecasting effort as detailed in this report.