Pacini
Astrid
Pacini
Astrid
No Thumbnail Available
Search Results
Now showing
1 - 14 of 14
-
ArticleMean and seasonal circulation of the eastern Chukchi Sea from moored timeseries in 2013-2014(American Geophysical Union, 2021-04-30) Tian, Fei ; Pickart, Robert S. ; Lin, Peigen ; Pacini, Astrid ; Moore, G. W. K. ; Stabeno, Phyllis J. ; Weingartner, Thomas J. ; Itoh, Motoyo ; Kikuchi, Takashi ; Dobbins, Elizabeth ; Bell, Shaun ; Woodgate, Rebecca ; Danielson, Seth L. ; Wang, ZhaominFrom late-summer 2013 to late-summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year-long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze-up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one-dimensional mixed-layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind-driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.
-
ArticleMean conditions and seasonality of the West Greenland boundary current system near Cape Farewell(American Meteorological Society, 2020-09-18) Pacini, Astrid ; Pickart, Robert S. ; Bahr, Frank B. ; Torres, Daniel J. ; Ramsey, Andree L. ; Holte, James W. ; Karstensen, Johannes ; Oltmanns, Marilena ; Straneo, Fiamma ; Le Bras, Isabela Astiz ; Moore, G. W. K. ; de Jong, Marieke FemkeThe structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
-
ThesisStructure, variability, and dynamics of the West Greenland Boundary Current System(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2022-02) Pacini, Astrid ; Pickart, Robert S.The ventilation of intermediate waters in the Labrador Sea has important implications for the strength of the Atlantic Meridional Overturning Circulation. Boundary current-interior interactions regulate the exchange of properties between the slope and the basin, which in turn regulates the magnitude of interior convection and the export of ventilated waters from the subpolar gyre. This thesis characterizes theWest Greenland Boundary Current System near Cape Farewell across a range of spatio-temporal scales. The boundary current system is composed of three velocity cores: (1) the West Greenland Coastal Current (WGCC), transporting Greenland and Arctic meltwaters on the shelf; (2) the West Greenland Current (WGC), which advects warm, saline Atlantic-origin water at depth, meltwaters at the surface, and newly-ventilated Labrador Sea Water (LSW); and (3) the Deep Western Boundary Current, which carries dense overflow waters ventilated in the Nordic Seas. The seasonal presence of the LSW and Atlantic-origin water are dictated by air-sea buoyancy forcing, while the seasonality of the WGCC is governed by remote wind forcing and the propagation of coastally trapped waves from East Greenland. Using mooring data and hydrographic surveys, we demonstrate mid-depth intensified cyclones generated at Denmark Strait are found offshore of the WGC and enhance the overflow water transport at synoptic timescales. Using mooring, hydrographic, and satellite data, we demonstrate that the WGC undergoes extensive meandering due to baroclinic instability that is enhanced in winter due to LSW formation adjacent to the current. This leads to the production of small-scale, anticyclonic eddies that can account for the entirety of wintertime heat loss within the Labrador Sea. The meanders are shown to trigger the formation of Irminger Rings downstream. Using mooring, hydrographic, atmospheric, and Lagrangian data, and a mixing model, we find that strong atmospheric storms known as forward tip jets cause upwelling at the shelfbreak that triggers offshore export of freshwater. This freshwater flux can explain the observed lack of ventilation in the eastern Labrador Sea. Together, this thesis documents previously unobserved interannual, seasonal, and synoptic-scale variability and dynamics within the West Greenland boundary current system that must be accounted for in future modeling.
-
ArticleCharacteristics and transformation of Pacific winter water on the Chukchi Sea shelf in late spring(American Geophysical Union, 2019-10-14) Pacini, Astrid ; Moore, G. W. K. ; Pickart, Robert S. ; Nobre, Carolina ; Bahr, Frank B. ; Vage, Kjetil ; Arrigo, Kevin R.Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.
-
ArticleIce nucleating particles carried from below a phytoplankton bloom to the arctic atmosphere(American Geophysical Union, 2019-07-15) Creamean, Jessie M. ; Cross, Jessica N. ; Pickart, Robert S. ; McRaven, Leah T. ; Lin, Peigen ; Pacini, Astrid ; Schmale, David G. ; Ceniceros, Julio ; Aydell, Taylor ; Colombi, N. ; Bolger, Emily ; DeMott, Paul ; Hanlon, ReginaAs Arctic temperatures rise at twice the global rate, sea ice is diminishing more quickly than models can predict. Processes that dictate Arctic cloud formation and impacts on the atmospheric energy budget are poorly understood, yet crucial for evaluating the rapidly changing Arctic. In parallel, warmer temperatures afford conditions favorable for productivity of microorganisms that can effectively serve as ice nucleating particles (INPs). Yet the sources of marine biologically derived INPs remain largely unknown due to limited observations. Here we show, for the first time, how biologically derived INPs were likely transported hundreds of kilometers from deep Bering Strait waters and upwelled to the Arctic Ocean surface to become airborne, a process dependent upon a summertime phytoplankton bloom, bacterial respiration, ocean dynamics, and wind‐driven mixing. Given projected enhancement in marine productivity, combined oceanic and atmospheric transport mechanisms may play a crucial role in provision of INPs from blooms to the Arctic atmosphere.
-
ArticleUnder-ice phytoplankton blooms inhibited by spring convective mixing in refreezing leads(John Wiley & Sons, 2018-01-07) Lowry, Kate E. ; Pickart, Robert S. ; Selz, Virginia ; Mills, Matthew M. ; Pacini, Astrid ; Lewis, Kate M. ; Joy-Warren, Hannah L. ; Nobre, Carolina ; van Dijken, Gert L. ; Grondin, Pierre-Luc ; Ferland, Joannie ; Arrigo, Kevin R.Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84–95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.
-
ArticleCyclonic Eddies in the West Greenland Boundary Current System(American Meteorological Society, 2021-06-08) Pacini, Astrid ; Pickart, Robert S. ; Le Bras, Isabela A. ; Straneo, Fiamma ; Holliday, Naomi Penny ; Spall, Michael A.The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.
-
ArticleEvolution of the freshwater coastal current at the southern tip of Greenland(American Meteorological Society, 2018-09-11) Lin, Peigen ; Pickart, Robert S. ; Torres, Daniel J. ; Pacini, AstridShipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
-
ArticlePacific abyssal transport and mixing: Through the Samoan Passage versus around the Manihiki Plateau(American Meteorological Society, 2019-01-11) Pratt, Lawrence J. ; Voet, Gunnar ; Pacini, Astrid ; Tan, Shuwen ; Alford, Matthew H. ; Carter, Glenn S. ; Girton, James B. ; Menemenlis, DimitrisThe main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
-
ArticleSubpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation(Nature Research, 2021-05-24) Li, Feili ; Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke F. ; deYoung, Brad ; Fraser, Neil ; Fried, Nora ; Han, Guoqi ; Holliday, Naomi Penny ; Holte, James W. ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Jones, Sam ; Johnson, Clare ; Karstensen, Johannes ; Le Bras, Isabela A. ; Lherminier, Pascale ; Lin, Xiaopei ; Mercier, Herlé ; Oltmanns, Marilena ; Pacini, Astrid ; Petit, Tillys ; Pickart, Robert S. ; Rayner, Darren ; Straneo, Fiamma ; Thierry, Virginie ; Visbeck, Martin ; Yashayaev, Igor ; Zhou, ChunChanges in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.
-
ArticleThe Iceland Greenland Seas Project(American Meteorological Society, 2019-09-27) Renfrew, Ian A. ; Pickart, Robert S. ; Vage, Kjetil ; Moore, G. W. K. ; Bracegirde, Thomas J. ; Elvidge, Andrew D. ; Jeansson, Emil ; Lachlan-Cope, Thomas ; McRaven, Leah T. ; Papritz, Lukas ; Reuder, Joachim ; Sodemann, Harald ; Terpstra, Annick ; Waterman, Stephanie N. ; Valdimarsson, Héðinn ; Weiss, Albert ; Almansi, Mattia ; Bahr, Frank B. ; Brakstad, Ailin ; Barrell, Christopher ; Brooke, Jennifer K. ; Brooks, Barbara J. ; Brooks, Ian M. ; Brooks, Malcolm E. ; Bruvik, Erik Magnus ; Duscha, Christiane ; Fer, Ilker ; Golid, H. M. ; Hallerstig, M. ; Hessevik, Idar ; Huang, Jie ; Houghton, Leah A. ; Jonsson, Steingrimur ; Jonassen, Marius ; Jackson, K. ; Kvalsund, K. ; Kolstad, Erik W. ; Konstali, K. ; Kristiansen, Jorn ; Ladkin, Russell ; Lin, Peigen ; Macrander, Andreas ; Mitchell, Alexandra ; Olafsson, H. ; Pacini, Astrid ; Payne, Chris ; Palmason, Bolli ; Perez-Hernandez, M. Dolores ; Peterson, Algot K. ; Petersen, Guðrún N. ; Pisareva, Maria N. ; Pope, James O. ; Seidl, Andrew D. ; Semper, Stefanie ; Sergeev, Denis ; Skjelsvik, Silje ; Søiland, Henrik ; Smith, D. ; Spall, Michael A. ; Spengler, Thomas ; Touzeau, Alexandra ; Tupper, George H. ; Weng, Y. ; Williams, Keith D. ; Yang, Xiaohau ; Zhou, ShenjieThe Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
-
ArticleWind‐forced upwelling along the West Greenland Shelfbreak: implications for labrador sea water formation(American Geophysical Union, 2023-02-17) Pacini, Astrid ; Pickart, Robert S.Arctic-origin and Greenland meltwaters circulate cyclonically in the boundary current system encircling the Labrador Sea. The ability of this freshwater to penetrate the interior basin has important consequences for dense water formation and the lower limb of the Atlantic Meridional Overturning Circulation. However, the precise mechanisms by which the freshwater is transported offshore, and the magnitude of this flux, remain uncertain. Here, we investigate wind-driven upwelling northwest of Cape Farewell using 4 years of high-resolution data from the Overturning in the Subpolar North Atlantic Program west Greenland mooring array, deployed from September 2014–2018, along with Argo, shipboard, and atmospheric reanalysis data. A total of 49 upwelling events were identified corresponding to enhanced northwesterly winds, followed by reduced along-stream flow of the boundary current and anomalously dense water present on the outer shelf. The events occur during the development stage of forward Greenland tip jets. During the storms, a cross-stream Ekman cell develops that transports freshwater offshore in the surface layer and warm, saline, Atlantic-origin waters onshore at depth. The net fluxes of heat and freshwater for a representative storm are computed. Using a one-dimensional mixing model, it is shown that the freshwater input resulting from the locus of winter storms could significantly limit the wintertime development of the mixed layer and hence the production of Labrador Sea Water in the southeastern part of the basin.
-
ArticleThe Pacific water flow branches in the eastern Chukchi Sea(Elsevier, 2023-11-10) Pickart, Robert S. ; Lin, Peigen ; Bahr, Frank B. ; McRaven, Leah T. ; Huang, Jie ; Pacini, Astrid ; Arrigo, Kevin Robert ; Ashjian, Carin J. ; Berchok, Catherine L. ; Baumgartner, Mark F. ; Cho, Kyoungho ; Cooper, Lee W. ; Danielson, Seth L. ; Dasher, Doug H. ; Fuiwara, Amane ; Gann, Jeanette C. ; Grebmeier, Jacqueline M. ; He, Jiangfeng ; Hirawake, Toru ; Itoh, Motoyo ; Juranek, Laurie ; Kikuchi, Takashi ; Moore, G. W. Kent ; Napp, Jeffrey M. ; John Nelson, R. ; Nishino, Shigeto ; Statscewich, Hank ; Stabeno, Phyllis J. ; Stafford, Kathleen M. ; Ueno, Hiromichi ; Vagle, Svein ; Weingartner, Thomas J. ; Williams, Bill ; Zimmermann, Sarah L.The flow of Pacific-origin water across the Chukchi Sea shelf impacts the regional ecosystem in profound ways, yet the two current branches on the eastern shelf that carry the water from Bering Strait to Barrow Canyon – the Alaskan Coastal Current (ACC) and Central Channel (CC) Branch – have not been clearly distinguished or quantified. In this study we use an extensive collection of repeat hydrographic sections occupied at three locations on the Chukchi shelf, together with data from a climatology of shipboard velocity data, to accomplish this. The data were collected predominantly between 2010 and 2020 during the warm months of the year as part of the Distributed Biological Observatory and Arctic Observing Network. The mean sections show that mass is balanced for both currents at the three locations: Bering Strait, Point Hope, and Barrow Canyon. The overall mean ACC transport is 0.34 ± 0.04 Sv, and that of the CC Branch is 0.86 ± 0.11 Sv. The dominant hydrographic variability at Bering Strait is seasonal, but this becomes less evident to the north. At Barrow Canyon, the dominant hydrographic signal is associated with year-to-year variations in sea-ice melt. Farther south there is pronounced mesoscale variability: an empirical orthogonal function analysis at Bering Strait and Point Hope reveals a distinct ACC mode and CC Branch mode in hydrography and baroclinic transport, where the former is wind-driven. Finally, the northward evolution in properties of the two currents is investigated. The poleward increase in salinity of the ACC can be explained by lateral mixing alone, but solar heating together with wind mixing play a large role in the temperature evolution. This same atmospheric forcing also impacts the northward evolution of the CC Branch.
-
ArticleSeasonality of the Meridional Overturning Circulation in the subpolar North Atlantic(Nature Research, 2023-05-25) Fu, Yao ; Lozier, M Susan ; Biló, Tiago Carrilho ; Bower, Amy S. ; Cunningham, Stuart A. ; Cyr, Frédéric ; de Jong, M. Femke ; deYoung, Brad ; Drysdale, Lewis ; Fraser, Neil ; Fried, Nora ; Furey, Heather H. ; Han, Guoqi ; Handmann, Patricia ; Holliday, N. Penny ; Holte, James ; Inall, Mark E. ; Johns, William E. ; Jones, Sam ; Karstensen, Johannes ; Li, Feili ; Pacini, Astrid ; Pickart, Robert S. ; Rayner, Darren ; Straneo, Fiammetta ; Yashayaev, IgorUnderstanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.