Mannino Antonio

No Thumbnail Available
Last Name
Mannino
First Name
Antonio
ORCID
0000-0002-0938-7219

Search Results

Now showing 1 - 7 of 7
  • Article
    The United States' next generation of atmospheric composition and coastal ecosystem measurements : NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission
    (American Meteorological Society, 2012-10) Fishman, J. ; Iraci, L. T. ; Al-Saadi, J. ; Chance, K. ; Chavez, Francisco P. ; Chin, M. ; Coble, Paula G. ; Davis, Curtiss O. ; DiGiacomo, P. M. ; Edwards, D. ; Eldering, A. ; Goes, Joachim I. ; Herman, J. ; Hu, Chuanmin ; Jacob, Daniel J. ; Jordan, C. ; Kawa, S. Randolph ; Key, R. ; Liu, X. ; Lohrenz, Steven E. ; Mannino, Antonio ; Natraj, V. ; Neil, D. ; Neu, J. ; Newchurch, M. J. ; Pickering, K. ; Salisbury, Joseph E. ; Sosik, Heidi M. ; Subramaniam, A. ; Tzortziou, Maria ; Wang, Jian ; Wang, M.
    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.
  • Article
    High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy
    (American Geophysical Union, 2019-06-10) Mulholland, Margaret R. ; Bernhardt, Peter W. ; Widner, Brittany ; Selden, Corday ; Chappell, Phoebe Dreux ; Clayton, Sophie A. ; Mannino, Antonio ; Hyde, Kimberly J. W.
    Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.
  • Article
    Surface ocean pCO2 seasonality and sea-air CO2 flux estimates for the North American east coast
    (John Wiley & Sons, 2013-10-16) Signorini, Sergio R. ; Mannino, Antonio ; Najjar, Raymond G. ; Friedrichs, Marjorie A. M. ; Cai, Wei-Jun ; Salisbury, Joseph E. ; Wang, Zhaohui Aleck ; Thomas, Helmuth ; Shadwick, Elizabeth H.
    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between −3.4 and −5.4 Tg C yr−1 (areal average of −0.7 to −1.0 mol CO2 m−2 yr−1) over the period 2003–2010.
  • Article
    Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America
    (John Wiley & Sons, 2018-04-04) Najjar, Raymond G. ; Herrmann, Maria ; Alexander, Richard ; Boyer, Elizabeth W. ; Burdige, David J. ; Butman, David ; Cai, Wei-Jun ; Canuel, Elizabeth A. ; Chen, Robert F. ; Friedrichs, Marjorie A. M. ; Feagin, Russell A. ; Griffith, Peter C. ; Hinson, Audra L. ; Holmquist, James R. ; Hu, Xinping ; Kemp, William M. ; Kroeger, Kevin D. ; Mannino, Antonio ; McCallister, S. Leigh ; McGillis, Wade R. ; Mulholland, Margaret R. ; Pilskaln, Cynthia H. ; Salisbury, Joseph E. ; Signorini, Sergio R. ; St-Laurent, Pierre ; Tian, Hanqin ; Tzortziou, Maria ; Vlahos, Penny ; Wang, Zhaohui Aleck ; Zimmerman, Richard C.
    Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
  • Article
    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
    (John Wiley & Sons, 2018-03-06) Muller-Karger, Frank E. ; Hestir, Erin ; Ade, Christiana ; Turpie, Kevin ; Roberts, Dar A. ; Siegel, David A. ; Miller, Robert J. ; Humm, David ; Izenberg, Noam ; Keller, Mary ; Morgan, Frank ; Frouin, Robert ; Dekker, Arnold G. ; Gardner, Royal ; Goodman, James ; Schaeffer, Blake ; Franz, Bryan A. ; Pahlevan, Nima ; Mannino, Antonio ; Concha, Javier A. ; Ackleson, Steven G. ; Cavanaugh, Kyle C. ; Romanou, Anastasia ; Tzortziou, Maria ; Boss, Emmanuel S. ; Pavlick, Ryan ; Freeman, Anthony ; Rousseaux, Cecile S. ; Dunne, John P. ; Long, Matthew C. ; Salas, Eduardo Klein ; McKinley, Galen A. ; Goes, Joachim I. ; Letelier, Ricardo M. ; Kavanaugh, Maria T. ; Roffer, Mitchell ; Bracher, Astrid ; Arrigo, Kevin R. ; Dierssen, Heidi M. ; Zhang, Xiaodong ; Davis, Frank W. ; Best, Benjamin D. ; Guralnick, Robert P. ; Moisan, John R. ; Sosik, Heidi M. ; Kudela, Raphael M. ; Mouw, Colleen B. ; Barnard, Andrew H. ; Palacios, Sherry ; Roesler, Collin S. ; Drakou, Evangelia G. ; Appeltans, Ward ; Jetz, Walter
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
  • Working Paper
    EXPORTS Measurements and Protocols for the NE Pacific Campaign
    (NASA STI Program and Woods Hole Oceanographic Institution, 2021-02) Behrenfeld, Michael J. ; Benitez-Nelson, Claudia R. ; Boss, Emmanuel S. ; Brzezinski, Mark A. ; Buck, Kristen N. ; Buesseler, Ken O. ; Burd, Adrian B. ; Carlson, Craig A. ; Cassar, Nicolas ; Cetinić, Ivona ; Close, Hilary G. ; Craig, Susanne E. ; D'Asaro, Eric A. ; Durkin, Colleen A. ; Estapa, Margaret L. ; Fassbender, Andrea ; Fox, James ; Freeman, Scott ; Gifford, Scott M. ; Gong, Weida ; Graff, Jason R. ; Gray, Deric ; Guidi, Lionel ; Halsey, Kim ; Hansell, Dennis A. ; Haëntjens, Nils ; Horner, Tristan J. ; Jenkins, Bethany D. ; Jones, Janice L. ; Karp-Boss, Lee ; Kramer, Sasha J. ; Lam, Phoebe J. ; Lee, Craig M. ; Lee, Jong-Mi ; Liu, Shuting ; Mannino, Antonio ; Maas, Amy E. ; Marchal, Olivier ; Marchetti, Adrian ; McDonnell, Andrew M. P. ; McNair, Heather ; Menden-Deuer, Susanne ; Morison, Francoise ; Nelson, Norman B. ; Nicholson, David P. ; Niebergall, Alexandria K. ; Omand, Melissa M. ; Passow, Uta ; Perry, Mary J. ; Popp, Brian N. ; Proctor, Chris ; Rafter, Patrick ; Roca-Martí, Montserrat ; Roesler, Collin S. ; Rubin, Edwina ; Rynearson, Tatiana A. ; Santoro, Alyson E. ; Siegel, David A. ; Sosik, Heidi M. ; Soto Ramos, Inia ; Stamieszkin, Karen ; Steinberg, Deborah K. ; Stephens, Brandon M. ; Thompson, Andrew F. ; Van Mooy, Benjamin A. S. ; Zhang, Xiaodong
    EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology.
  • Article
    Quantification of discharge‐specific effects on dissolved organic matter export from major Arctic rivers from 1982 through 2019
    (American Geophysical Union, 2023-08-13) Clark, J. Blake ; Mannino, Antonio ; Spencer, Robert G. M. ; Tank, Suzanne E. ; McClelland, James W.
    Long-term increases in Arctic river discharge have been well documented, and observations in the six largest Arctic rivers show strong positive correlations between dissolved organic carbon (DOC) concentration, river discharge, and chromophoric dissolved organic matter (CDOM) content. Here, observations of DOC and CDOM collected from 2009 to 2019 by the Arctic Great Rivers Observatory were used to estimate chromophoric DOC (CDOC) concentrations in the Kolyma, Lena, Mackenzie, Ob', Yenisey, and Yukon Rivers. All rivers except the Mackenzie showed significant positive correlations between annual watershed runoff and the proportion of the DOC that is chromophoric. Historical estimates of DOC and CDOC export were calculated for 1982–2019 by extrapolating the DOC and CDOC concentration—discharge relationships from 2009 to 2019 as a hindcast modeled estimate. For the six rivers combined, modeled DOC and CDOC exports increased, but CDOC increased faster than total DOC. The Lena and Ob' Rivers showed significant increases in DOC export individually, with annual trends of 39.1 and 20.4 Gg C yr−1 respectively. November–April (winter) DOC and CDOC exports increased in all rivers but the Yenisey, with the hindcast winter Kolyma export increasing by more than 20% per decade. There were no significant trends in discharge or associated DOC and CDOC fluxes during the observational period from 2009 to 2019; only when hindcasted values driven by changes in river discharge were analyzed did trends in DOC and CDOC emerge. This demonstrates how shifting seasonal distributions and increases in discharge can drive changes in DOC and CDOC concentrations and exports independent of other environmental factors.