Blichert-Toft
Janne
Blichert-Toft
Janne
No Thumbnail Available
Search Results
Now showing
1 - 7 of 7
-
ArticleHot and heterogenous high-he-3/He-4 components: New constraints from proto-Iceland plume lavas from Baffin Island(American Geophysical Union, 2019-11-07) Willhite, Lori N. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Bindeman, Ilya N. ; Kurz, Mark D. ; Halldórsson, Saemundur ; Harðardóttir, Sunna ; Gazel, Esteban ; Price, Allison A. ; Byerly, Benjamin L.The Icelandic hotspot has erupted basaltic magma with the highest mantle‐derived 3He/4He over a period spanning much of the Cenozoic, from the early‐Cenozoic Baffin Island‐West Greenland flood basalt province (49.8 RA), to mid‐Miocene lavas in northwest Iceland (40.2 to 47.5 RA), to Pleistocene lavas in Iceland's neovolcanic zone (34.3 RA). The Baffin Island lavas transited through and potentially assimilated variable amounts of Precambrian continental basement. We use geochemical indicators sensitive to continental crust assimilation (Nb/Th, Ce/Pb, MgO) to identify the least crustally contaminated lavas. Four lavas, identified as “least crustally contaminated,” have high MgO (>15 wt.%), and Nb/Th and Ce/Pb that fall within the mantle range (Nb/Th = 15.6 ± 2.6, Ce/Pb = 24.3 ± 4.3). These lavas have 87Sr/86Sr = 0.703008–0.703021, 143Nd/144Nd = 0.513094–0.513128, 176Hf/177Hf = 0.283265–0.283284, 206Pb/204Pb = 17.7560–17.9375, 3He/4He up to 39.9 RA, and mantle‐like δ18O of 5.03–5.21‰. The radiogenic isotopic compositions of the least crustally contaminated lavas are more geochemically depleted than Iceland high‐3He/4He lavas, a shift that cannot be explained by continental crust assimilation in the Baffin suite. Thus, we argue for the presence of two geochemically distinct high‐3He/4He components within the Iceland plume. Additionally, the least crustally contaminated primary melts from Baffin Island‐West Greenland have higher mantle potential temperatures (1510 to 1630 °C) than Siqueiros mid‐ocean ridge basalts (1300 to 1410 °C), which attests to a hot, buoyant plume origin for early Iceland plume lavas. These observations support the contention that the geochemically heterogeneous high‐3He/4He domain is dense, located in the deep mantle, and sampled by only the hottest plumes.
-
ArticleGeodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins(John Wiley & Sons, 2017-03-17) Price, Allison A. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Kurz, Mark D. ; Gill, James B. ; Blusztajn, Jerzy S. ; Jenner, Frances ; Brens, Raul ; Arculus, Richard J.We present new Sr-Nd-Pb-Hf-He isotopic data for 65 volcanic samples from the northern Lau and North Fiji Basins. This includes 47 lavas obtained from 40 dredge sites spanning an east-west transect across the Lau and North Fiji basins, 10 ocean island basalt (OIB)-type lavas collected from seven Fijian islands, and eight OIB lavas sampled on Rotuma. For the first time, we are able to map clear north-south and east-west geochemical gradients in 87Sr/86Sr across the northern Lau and North Fiji Basins: lavas with the most geochemically enriched radiogenic isotopic signatures are located in the northeast Lau Basin, while signatures of geochemical enrichment are diminished to the south and west away from the Samoan hot spot. Based on these geochemical patterns and plate reconstructions of the region, these observations are best explained by the addition of Samoa, Rurutu, and Rarotonga hot spot material over the past 4 Ma. We suggest that underplated Samoan material has been advected into the Lau Basin over the past ∼4 Ma. As the slab migrated west (and toward the Samoan plume) via rollback over time, younger and hotter (and therefore less viscous) underplated Samoan plume material was entrained. Thus, entrainment efficiency of underplated plume material was enhanced, and Samoan plume signatures in the Lau Basin became stronger as the trench approached the Samoan hot spot. The addition of subducted volcanoes from the Cook-Austral Volcanic Lineament first from the Rarotonga hot spot, then followed by the Rurutu hot spot, contributes to the extreme geochemical signatures observed in the northeast Lau Basin.
-
ArticleGeochemical stages at Jasper Seamount and the origin of intraplate volcanoes(American Geophysical Union, 2009-02-03) Konter, Jasper G. ; Staudigel, Hubert ; Blichert-Toft, Janne ; Hanan, B. B. ; Polve, M. ; Davies, G. R. ; Shimizu, Nobumichi ; Schiffman, P.Ocean intraplate volcanoes (OIVs) are formed in a sequence of stages, from large to small, that involve a systematic progression in mantle melting in terms of volumes and melt fractions with concomitant distinct mantle source signatures. The Hawaiian volcanoes are the best-known example of this type of evolution, even though they are extraordinarily large. We explore the Pb-Sr-Nd-Hf isotopic evolution of much smaller OIVs in the Fieberling-Guadalupe Seamount Trail (FGST) and small, near-ridge generated seamounts in the same region. In particular, we investigate whether we can extend the Hawaiian models to Jasper Seamount in the FGST, which displays three distinct volcanic stages. Each stage has characteristic variations in Pb-Sr-Nd-Hf isotopic composition and trace element enrichment that are remarkably similar to the systematics observed in Hawaii: (1) The most voluminous, basal “shield building” stage, the Flank Transitional Series (FTS), displays slightly isotopically enriched compositions compared to the common component C and the least enriched trace elements (143Nd/144Nd: 0.512866–0.512909, 206Pb/204Pb: 18.904–19.054; La/Sm: 3.71–4.82). (2) The younger and substantially less voluminous Flank Alkalic Series (FAS) is comparatively depleted in Sr, Nd, and Hf isotope compositions plotting on the side of C, near the least extreme values for the Austral Islands and St. Helena. Trace elements are highly enriched (143Nd/144Nd: 0.512912–0.512948, 206Pb/204Pb: 19.959–20.185; La/Sm: 9.24). (3) The Summit Alkalic Series (SAS) displays the most depleted Sr, Nd, and Hf isotope ratios and is very close in isotopic composition to the nearby near-ridge seamounts but with highly enriched trace elements (143Nd/144Nd: 0.512999–0.513050, 206Pb/204Pb: 19.080–19.237; La/Sm: 5.73–8.61). These data fit well with proposed multicomponent melting models for Hawaii, where source lithology controls melt productivity. We examine the effect of melting a source with dry peridotite, wet peridotite, and pyroxenite, calculating melt productivity functions with depth to evaluate the effect of potential temperature and lithospheric thickness. This type of melting model appears to explain the isotopic variation in a range of small to large OIVs, in particular for OIVs occurring far from the complicating effects of plate boundaries and continental crust, constraining their geodynamic origin.
-
ArticleTemporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume(Elsevier, 2019-07-24) Mundl-Petermeier, Andrea ; Walker, Richard J. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Kurz, Mark D. ; Halldórsson, SaemundurStudies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
-
ArticleGeochemical evidence in the northeast Lau Basin for subduction of the Cook-Austral volcanic chain in the Tonga Trench(John Wiley & Sons, 2016-05-13) Price, Allison A. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Blusztajn, Jerzy S. ; Conatser, Christopher S. ; Konter, Jasper G. ; Koppers, Anthony ; Kurz, Mark D.Lau Basin basalts host an array of geochemical signatures that suggest incorporation of enriched mantle source material often associated with intraplate hotspots, but the origin of these signatures remain uncertain. Geochemical signatures associated with mantle material entrained from the nearby Samoan hotspot are present in northwest Lau Basin lavas, and subducted seamounts from the Louisville hotspot track may contribute geochemical signatures to the Tonga Arc. However, lavas in the northeast Lau Basin (NELB) have unique enriched geochemical signatures that cannot be related to these hotspots, but can be attributed to the subduction of seamounts associated with the Cook-Austral volcanic lineament. Here we present geochemical data on a new suite of NELB lavas—ranging in 40Ar/39Ar age from 1.3 Ma to 0.365 ka—that have extreme signatures of geochemical enrichment, including lavas with the highest 206Pb/204Pb (19.580) and among the lowest 143Nd/144Nd (0.512697) encountered in the Lau Basin to date. These signatures are linked to the canonical EM1 (enriched mantle 1) and HIMU (high-μ = 238U/204Pb) mantle end-members, respectively. Using a plate reconstruction model, we show that older portions of the traces of two of the Cook-Austral hotspots that contributed volcanism to the Cook-Austral volcanic lineament—the Rarotonga and Rurutu hotspots—were potentially subducted in the Tonga Trench beneath the NELB. The geochemical signatures of the Rarotonga, Rurutu, and Samoan hotspots provide a compelling match to the extreme geochemical components observed in the new NELB lavas.
-
ArticleEvidence for a broadly distributed Samoan-plume signature in the northern Lau and North Fiji Basins(John Wiley & Sons, 2014-04-11) Price, Allison A. ; Jackson, Matthew G. ; Blichert-Toft, Janne ; Hall, Paul S. ; Sinton, John M. ; Kurz, Mark D. ; Blusztajn, Jerzy S.Geochemical enrichment of lavas in the northern Lau Basin may reflect the influx of Samoan-plume mantle into the region. We report major and trace element abundances and He-Sr-Nd-Hf-Pb-isotopic measurements for 23 submarine volcanic glasses covering 10 locations in the northern Lau and North Fiji Basins, and for three samples from Wallis Island, which lies between Samoa and the Lau Basin. These data extend the western limit of geochemical observations in the Basins and improve the resolution of North-South variations in isotopic ratios. The Samoan hot spot track runs along the length of the northern trace of the Lau and North Fiji Basins. We find evidence for a Samoan-plume component in lavas as far West as South Pandora Ridge (SPR), North Fiji Basin. Isotopic signatures in SPR samples are similar to those found in Samoan Upolu shield lavas, but show a slight shift toward MORB-like compositions. We explain the origin of the enriched signatures by a model in which Samoan-plume material and ambient depleted mantle undergo decompression melting during upwelling after transiting from beneath the thick Pacific lithosphere to beneath the thin lithosphere in the northern Lau and North Fiji Basins. Other lavas found in the region with highly depleted isotopic signatures may represent isolated pockets of depleted mantle in the basins that evaded this enrichment process. We further find that mixing between the two components in our model, a variably degassed high-3He/4He Samoan component and depleted MORB, can explain the diversity among geochemical data from the northern Lau Basin.
-
ArticleRecent volcanic accretion at 9°N–10°N East Pacific Rise as resolved by combined geochemical and geological observations(John Wiley & Sons, 2013-08-01) Waters, Christopher L. ; Sims, Kenneth W. W. ; Soule, Samuel A. ; Blichert-Toft, Janne ; Dunbar, Nelia W. ; Plank, Terry ; Prytulak, Julie ; Sohn, Robert A. ; Tivey, Maurice A.The ridge crest at 9°N–10°N East Pacific Rise (EPR) is dominated by overlapping lava flows that have overflowed the axial summit trough and flowed off-axis, forming a shingle-patterned terrain up to ∼2–4 km on either side of the axial summit trough. In this study, we employ 230Th-226Ra dating methods, in conjunction with geochemistry and seafloor geological observations, in an effort to discern the stratigraphic relationships between adjacent flows. We measured major and trace elements and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, and 238U-230Th-226Ra for lava glass samples collected from several flow units up to ∼2 km away from the axial summit trough on the ridge crest at 9°50′N EPR. Statistical analysis of the 238U-230Th-226Ra data indicates that all but one measured sample from these flows cannot be resolved from the zero-age population; thus, we cannot confidently assign model ages to samples for discerning stratigraphic relationships among flows. However, because groups of samples can be distinguished based on similarities in geochemical compositions, particularly incompatible element abundances with high precision-normalized variability such as U and Th, and because the range of compositions is much greater than that represented by samples from the 1991–1992 and 2005–2006 eruptions, we suggest that the dive samples represent 6–10 eruptive units despite indistinguishable model ages. Geochemical variability between individual flows with similar ages requires relatively rapid changes in parental melt composition over the past ∼2 ka, and this likely reflects variations in the relative mixing proportions of depleted and enriched melts derived from a heterogeneous mantle source.