Kolling Martin

No Thumbnail Available
Last Name
Kolling
First Name
Martin
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements
    (John Wiley & Sons, 2013-09-23) Hathorne, Ed C. ; Gagnon, Alexander C. ; Felis, Thomas ; Adkins, Jess F. ; Asami, Ryuji ; Boer, Wim ; Caillon, Nicolas ; Case, David H. ; Cobb, Kim M. ; Douville, Eric ; deMenocal, Peter B. ; Eisenhauer, Anton ; Garbe-Schonberg, Dieter ; Geibert, Walter ; Goldstein, Steven L. ; Hughen, Konrad A. ; Inoue, Mayuri ; Kawahata, Hodaka ; Kolling, Martin ; Cornec, Florence L. ; Linsley, Braddock K. ; McGregor, Helen V. ; Montagna, Paolo ; Nurhati, Intan S. ; Quinn, Terrence M. ; Raddatz, Jacek ; Rebaubier, Helene ; Robinson, Laura F. ; Sadekov, Aleksey ; Sherrell, Robert M. ; Sinclair, Dan ; Tudhope, Alexander W. ; Wei, Gangjian ; Wong, Henri ; Wu, Henry C. ; You, Chen-Feng
    The Sr/Ca ratio of coral aragonite is used to reconstruct past sea surface temperature (SST). Twenty-one laboratories took part in an interlaboratory study of coral Sr/Ca measurements. Results show interlaboratory bias can be significant, and in the extreme case could result in a range in SST estimates of 7°C. However, most of the data fall within a narrower range and the Porites coral reference material JCp-1 is now characterized well enough to have a certified Sr/Ca value of 8.838 mmol/mol with an expanded uncertainty of 0.089 mmol/mol following International Association of Geoanalysts (IAG) guidelines. This uncertainty, at the 95% confidence level, equates to 1.5°C for SST estimates using Porites, so is approaching fitness for purpose. The comparable median within laboratory error is <0.5°C. This difference in uncertainties illustrates the interlaboratory bias component that should be reduced through the use of reference materials like the JCp-1. There are many potential sources contributing to biases in comparative methods but traces of Sr in Ca standards and uncertainties in reference solution composition can account for half of the combined uncertainty. Consensus values that fulfil the requirements to be certified values were also obtained for Mg/Ca in JCp-1 and for Sr/Ca and Mg/Ca ratios in the JCt-1 giant clam reference material. Reference values with variable fitness for purpose have also been obtained for Li/Ca, B/Ca, Ba/Ca, and U/Ca in both reference materials. In future, studies reporting coral element/Ca data should also report the average value obtained for a reference material such as the JCp-1.
  • Article
    Earthquake-enhanced dissolved carbon cycles in ultra-deep ocean sediments
    (Nature Research, 2023-09-11) Chu, Mengfan ; Bao, Rui ; Strasser, Michael ; Ikehara, Ken ; Everest, Jez ; Maeda, Lena ; Hochmuth, Katharina ; Xu, Li ; McNichol, Ann P. ; Bellanova, Piero ; Rasbury, E. Troy ; Kolling, Martin ; Riedinger, Natascha ; Johnson, Joel E. ; Luo, Min ; Marz, Christian ; Straub, Susanne ; Jitsuno, Kana ; Brunet, Morgane ; Cai, Zhirong ; Cattaneo, Antonio ; Hsiung, Kanhsi ; Ishizawa, Takashi ; Itaki, Takuya ; Kanamatsu, Toshiya ; Keep, Myra ; Kioka, Arata ; McHugh, Cecilia M. G. ; Micallef, Aaron ; Pandey, Dhananjai ; Proust, Jean Noel ; Satoguchi, Yasufumi ; Sawyer, Derek ; Seibert, Chloe ; Silver, Maxwell ; Virtasalo, Joonas ; Wang, Yonghong ; Wu, Ting-Wei ; Zellers, Sarah
    Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.