Chang Ping

No Thumbnail Available
Last Name
Chang
First Name
Ping
ORCID

Search Results

Now showing 1 - 6 of 6
  • Preprint
    Enhanced warming over the global subtropical western boundary currents
    ( 2011-11) Wu, Lixin ; Cai, Wenju ; Zhang, Liping ; Nakamura, Hisashi ; Timmermann, Axel ; Joyce, Terrence M. ; McPhaden, Michael J. ; Alexander, Michael A. ; Qiu, Bo ; Visbeck, Martin ; Chang, Ping ; Giese, Benjamin
    Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
  • Article
    Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans : the U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group
    (American Meteorological Society, 2017-01-12) Zuidema, Paquita ; Chang, Ping ; Medeiros, Brian ; Kirtman, Benjamin ; Mechoso, Roberto ; Schneider, Edwin K. ; Toniazzo, Thomas ; Richter, Ingo ; Small, R. Justin ; Bellomo, Katinka ; Brandt, Peter ; de Szoeke, Simon ; Farrar, J. Thomas ; Jung, Eunsil ; Kato, Seiji ; Li, Mingkui ; Patricola, Christina ; Wang, Zaiyu ; Wood, Robert ; Xu, Zhao
    Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
  • Article
    The tropical Atlantic observing system
    (Frontiers Media, 2019-05-10) Foltz, Gregory R. ; Brandt, Peter ; Richter, Ingo ; Rodriguez-fonseca, Belen ; Hernandez, Fabrice ; Dengler, Marcus ; Rodrigues, Regina ; Schmidt, Jörn Oliver ; Yu, Lisan ; Lefevre, Nathalie ; Cotrim Da Cunha, Leticia ; McPhaden, Michael J. ; Araujo, Moacyr ; Karstensen, Johannes ; Hahn, Johannes ; Martín-Rey, Marta ; Patricola, Christina ; Poli, Paul ; Zuidema, Paquita ; Hummels, Rebecca ; Perez, Renellys ; Hatje, Vanessa ; Luebbecke, Joke ; Polo, Irene ; Lumpkin, Rick ; Bourlès, Bernard ; Asuquo, Francis Emile ; Lehodey, Patrick ; Conchon, Anna ; Chang, Ping ; Dandin, Philippe ; Schmid, Claudia ; Sutton, Adrienne J. ; Giordani, Hervé ; Xue, Yan ; Illig, Serena ; Losada, Teresa ; Grodsky, Semyon A. ; Gasparin, Florent ; Lee, Tong ; Mohino, Elsa ; Nobre, Paulo ; Wanninkhof, Rik ; Keenlyside, Noel S. ; Garcon, Veronique Cameille ; Sanchez-Gomez, Emilia ; Nnamchi, Hyacinth ; Drevillon, Marie ; Storto, Andrea ; Remy, Elisabeth ; Lazar, Alban ; Speich, Sabrina ; Goes, Marlos Pereira ; Dorrington, Tarquin ; Johns, William E. ; Moum, James N. ; Robinson, Carol ; Perruche, Coralie ; de Souza, Ronald Buss ; Gaye, Amadou ; Lopez-Parages, Jorge ; Monerie, Paul-Arthur ; Castellanos, Paola ; Benson, Nsikak U. ; Hounkonnou, Mahouton Norbert ; Trotte Duha, Janice ; Laxenaire, Rémi ; Reul, Nicolas
    he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
  • Article
    The Community Climate System Model version 3 (CCSM3)
    (American Meteorological Society, 2006-06-01) Collins, William D. ; Bitz, Cecilia M. ; Blackmon, Maurice L. ; Bonan, Gordon B. ; Bretherton, Christopher S. ; Carton, James A. ; Chang, Ping ; Doney, Scott C. ; Hack, James J. ; Henderson, Thomas B. ; Kiehl, Jeffrey T. ; Large, William G. ; McKenna, Daniel S. ; Santer, Benjamin D. ; Smith, Richard D.
    The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
  • Preprint
    Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events
    ( 2013-11-11) Lynch-Stieglitz, Jean ; Schmidt, Matthew W. ; Henry, L. Gene ; Curry, William B. ; Skinner, Luke C. ; Mulitza, Stefan ; Zhang, Rong ; Chang, Ping
    Heinrich events - surges of icebergs into the North Atlantic Ocean - punctuated the last glacial period. The events are associated with millennial-scale cooling in the Northern Hemisphere. Freshwater from the melting icebergs is thought to have interrupted the Atlantic meridional overturning circulation, thus minimizing heat transport into the northern North Atlantic. The northward flow of warm water passes through the Florida Straits and is reflected in the distribution of seawater properties in this region. Here we investigate the northward flow through this region over the past 40,000 years using oxygen isotope measurements of benthic foraminifera from two cores on either side of the Florida Straits, which allow us to estimate water density, which is related to flow via the thermal wind relation. We infer a substantial reduction of flow during Heinrich Event 1 and the Heinrich-like Younger Dryas cooling, but little change during Heinrich Events 2 and 3, which occurred during an especially cold phase of the last glacial period. We speculate that because glacial circulation was already weakened before the onset of Heinrich Events 2 and 3, freshwater forcing had little additional effect. However, low-latitude climate perturbations were observed during all events. We therefore suggest these perturbations may not have been directly caused by changes in heat transport associated with Atlantic overturning circulation as commonly assumed.
  • Article
    Tropical Atlantic climate response to low-latitude and extratropical sea-surface temperature : a Little Ice Age perspective
    (American Geophysical Union, 2009-06-05) Saenger, Casey P. ; Chang, Ping ; Ji, Link ; Oppo, Delia W. ; Cohen, Anne L.
    Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (<1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (<0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.