Partin Camille A.

No Thumbnail Available
Last Name
Partin
First Name
Camille A.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Trace elements at the intersection of marine biological and geochemical evolution
    ( 2016-10) Robbins, Leslie J. ; Lalonde, Stefan V. ; Planavsky, Noah J. ; Partin, Camille A. ; Reinhard, Christopher T. ; Kendall, Brian ; Scott, Clint ; Hardisty, Dalton S. ; Gill, Benjamin C. ; Alessi, Daniel S. ; Dupont, Christopher L. ; Saito, Mak A. ; Crowe, Sean A. ; Poulton, Simon W. ; Bekker, Andrey ; Lyons, Timothy W. ; Konhauser, Kurt O.
    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages have yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth’s ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
  • Preprint
    Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history
    ( 2017-06-25) Konhauser, Kurt O. ; Planavsky, Noah J. ; Hardisty, Dalton S. ; Robbins, Leslie J. ; Warchola, Tyler J. ; Haugaard, Rasmus ; Lalonde, Stefan V. ; Partin, Camille A. ; Oonk, Paul B. H. ; Tsikos, Harilaos ; Lyons, Timothy W. ; Bekker, Andrey ; Johnson, Clark M.
    Iron formations (IF) represent an iron-rich rock type that typifies many Archaean and Proterozoic supracrustal successions and are chemical archives of Precambrian seawater chemistry and postdepositional iron cycling. Given that IF accumulated on the seafloor for over two billion years of Earth’s early history, changes in their chemical, mineralogical, and isotopic compositions offer a unique glimpse into environmental changes that took place on the evolving Earth. Perhaps one of the most significant events was the transition from an anoxic planet to one where oxygen was persistently present within the marine water column and atmosphere. Linked to this progressive global oxygenation was the evolution of aerobic microbial metabolisms that fundamentally influenced continental weathering processes, the supply of nutrients to the oceans, and, ultimately, diversification of the biosphere and complex life forms. Many of the key recent innovations in understanding IF genesis are linked to geobiology, since biologically assisted Fe(II) oxidation, either directly through photoferrotrophy, or indirectly through oxygenic photosynthesis, provides a process for IF deposition from mineral precursors. The abundance and isotope composition of Fe(II)-bearing minerals in IF additionally suggests microbial Fe(III) reduction, a metabolism that is deeply rooted in the Archaea and Bacteria. Linkages among geobiology, hydrothermal systems, and deposition of IF have been traditionally overlooked, but now form a coherent model for this unique rock type. This paper reviews the defining features of IF and their distribution through the Neoarchaean and Palaeoproterozoic. This paper is an update of previous reviews by Bekker et al. (2010, 2014) that will improve the quantitative framework we use to interpret IF deposition. In this work, we also discuss how recent discoveries have provided new insights into the processes underpinning the global rise in atmospheric oxygen and the geochemical evolution of the oceans.
  • Article
    The Sedimentary Geochemistry and Paleoenvironments Project
    (Wiley, 2021-07-05) Farrell, Úna C. ; Samawi, Rifaat ; Anjanappa, Savitha ; Klykov, Roman ; Adeboye, Oyeleye O. ; Agic, Heda ; Ahm, Anne-Sofie C. ; Boag, Thomas H. ; Bowyer, Fred ; Brocks, Jochen J. ; Brunoir, Tessa N. ; Canfield, Donald E. ; Chen, Xiaoyan ; Cheng, Meng ; Clarkson, Matthew O. ; Cole, Devon B. ; Cordie, David R. ; Crockford, Peter W. ; Cui, Huan ; Dahl, Tais W. ; Mouro, Lucas D. ; Dewing, Keith ; Dornbos, Stephen Q. ; Drabon, Nadja ; Dumoulin, Julie A. ; Emmings, Joseph F. ; Endriga, Cecilia R. ; Fraser, Tiffani A. ; Gaines, Robert R. ; Gaschnig, Richard M. ; Gibson, Timothy M. ; Gilleaudeau, Geoffrey J. ; Gill, Benjamin C. ; Goldberg, Karin ; Guilbaud, Romain ; Halverson, Galen P. ; Hammarlund, Emma U. ; Hantsoo, Kalev G. ; Henderson, Miles A. ; Hodgskiss, Malcolm S. W. ; Horner, Tristan J. ; Husson, Jon M. ; Johnson, Benjamin ; Kabanov, Pavel ; Keller, C. Brenhin ; Kimmig, Julien ; Kipp, Michael A. ; Knoll, Andrew H. ; Kreitsmann, Timmu ; Kunzmann, Marcus ; Kurzweil, Florian ; LeRoy, Matthew A. ; Li, Chao ; Lipp, Alex G. ; Loydell, David K. ; Lu, Xinze ; Macdonald, Francis A. ; Magnall, Joseph M. ; Mänd, Kaarel ; Mehra, Akshay ; Melchin, Michael J. ; Miller, Austin J. ; Mills, N. Tanner ; Mwinde, Chiza N. ; O'Connell, Brennan ; Och, Lawrence M. ; Ossa Ossa, Frantz ; Pagès, Anais ; Paiste, Kärt ; Partin, Camille A. ; Peters, Shanan E. ; Petrov, Peter ; Playter, Tiffany L. ; Plaza-Torres, Stephanie ; Porter, Susannah M. ; Poulton, Simon W. ; Pruss, Sara ; Richoz, Sylvain ; Ritzer, Samantha R. ; Rooney, Alan D. ; Sahoo, Swapan K. ; Schoepfer, Shane D. ; Sclafani, Judith A. ; Shen, Yanan ; Shorttle, Oliver ; Slotznick, Sarah P. ; Smith, Emily F. ; Spinks, Sam ; Stockey, Richard G. ; Strauss, Justin V. ; Stüeken, Eva E. ; Tecklenburg, Sabrina ; Thomson, Danielle ; Tosca, Nicholas J. ; Uhlein, Gabriel J. ; Vizcaíno, Maoli N. ; Wang, Huajian ; White, Tristan ; Wilby, Philip R. ; Woltz, Christina R. ; Wood, Rachel A. ; Xiang, Lei ; Yurchenko, Inessa A. ; Zhang, Tianran ; Planavsky, Noah J. ; Lau, Kimberly V. ; Johnston, David T. ; Sperling, Erik A.
    Geobiology explores how Earth's system has changed over the course of geologic history and how living organisms on this planet are impacted by or are indeed causing these changes. For decades, geologists, paleontologists, and geochemists have generated data to investigate these topics. Foundational efforts in sedimentary geochemistry utilized spreadsheets for data storage and analysis, suitable for several thousand samples, but not practical or scalable for larger, more complex datasets. As results have accumulated, researchers have increasingly gravitated toward larger compilations and statistical tools. New data frameworks have become necessary to handle larger sample sets and encourage more sophisticated or even standardized statistical analyses. In this paper, we describe the Sedimentary Geochemistry and Paleoenvironments Project (SGP; Figure 1), which is an open, community-oriented, database-driven research consortium. The goals of SGP are to (1) create a relational database tailored to the needs of the deep-time (millions to billions of years) sedimentary geochemical research community, including assembling and curating published and associated unpublished data; (2) create a website where data can be retrieved in a flexible way; and (3) build a collaborative consortium where researchers are incentivized to contribute data by giving them priority access and the opportunity to work on exciting questions in group papers. Finally, and more idealistically, the goal was to establish a culture of modern data management and data analysis in sedimentary geochemistry. Relative to many other fields, the main emphasis in our field has been on instrument measurement of sedimentary geochemical data rather than data analysis (compared with fields like ecology, for instance, where the post-experiment ANOVA (analysis of variance) is customary). Thus, the longer-term goal was to build a collaborative environment where geobiologists and geologists can work and learn together to assess changes in geochemical signatures through Earth history.