Goes Marlos Pereira

No Thumbnail Available
Last Name
Goes
First Name
Marlos Pereira
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    The tropical Atlantic observing system
    (Frontiers Media, 2019-05-10) Foltz, Gregory R. ; Brandt, Peter ; Richter, Ingo ; Rodriguez-fonseca, Belen ; Hernandez, Fabrice ; Dengler, Marcus ; Rodrigues, Regina ; Schmidt, Jörn Oliver ; Yu, Lisan ; Lefevre, Nathalie ; Cotrim Da Cunha, Leticia ; McPhaden, Michael J. ; Araujo, Moacyr ; Karstensen, Johannes ; Hahn, Johannes ; Martín-Rey, Marta ; Patricola, Christina ; Poli, Paul ; Zuidema, Paquita ; Hummels, Rebecca ; Perez, Renellys ; Hatje, Vanessa ; Luebbecke, Joke ; Polo, Irene ; Lumpkin, Rick ; Bourlès, Bernard ; Asuquo, Francis Emile ; Lehodey, Patrick ; Conchon, Anna ; Chang, Ping ; Dandin, Philippe ; Schmid, Claudia ; Sutton, Adrienne J. ; Giordani, Hervé ; Xue, Yan ; Illig, Serena ; Losada, Teresa ; Grodsky, Semyon A. ; Gasparin, Florent ; Lee, Tong ; Mohino, Elsa ; Nobre, Paulo ; Wanninkhof, Rik ; Keenlyside, Noel S. ; Garcon, Veronique Cameille ; Sanchez-Gomez, Emilia ; Nnamchi, Hyacinth ; Drevillon, Marie ; Storto, Andrea ; Remy, Elisabeth ; Lazar, Alban ; Speich, Sabrina ; Goes, Marlos Pereira ; Dorrington, Tarquin ; Johns, William E. ; Moum, James N. ; Robinson, Carol ; Perruche, Coralie ; de Souza, Ronald Buss ; Gaye, Amadou ; Lopez-Parages, Jorge ; Monerie, Paul-Arthur ; Castellanos, Paola ; Benson, Nsikak U. ; Hounkonnou, Mahouton Norbert ; Trotte Duha, Janice ; Laxenaire, Rémi ; Reul, Nicolas
    he tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
  • Article
    More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future
    (Frontiers Media, 2019-07-24) Goni, Gustavo J. ; Sprintall, Janet ; Bringas, Francis ; Cheng, Lijing ; Cirano, Mauro ; Dong, Shenfu ; Domingues, Ricardo ; Goes, Marlos Pereira ; Lopez, Hosmay ; Morrow, Rosemary ; Rivero, Ulises ; Rossby, H. Thomas ; Todd, Robert E. ; Trinanes, Joaquin ; Zilberman, Nathalie ; Baringer, Molly O. ; Boyer, Tim ; Cowley, Rebecca ; Domingues, Catia M. ; Hutchinson, Katherine ; Kramp, Martin ; Mata, Mauricio M. ; Reseghetti, Franco ; Sun, Charles ; Udaya Bhaskar, T. V. S. ; Volkov, Denis L.
    The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network.
  • Article
    Global perspectives on observing ocean boundary current systems
    (Frontiers Media, 2019-08-08) Todd, Robert E. ; Chavez, Francisco P. ; Clayton, Sophie A. ; Cravatte, Sophie ; Goes, Marlos Pereira ; Graco, Michelle ; Lin, Xiaopei ; Sprintall, Janet ; Zilberman, Nathalie ; Archer, Matthew ; Arístegui, Javier ; Balmaseda, Magdalena A. ; Bane, John M. ; Baringer, Molly O. ; Barth, John A. ; Beal, Lisa M. ; Brandt, Peter ; Calil, Paulo H. R. ; Campos, Edmo ; Centurioni, Luca R. ; Chidichimo, Maria Paz ; Cirano, Mauro ; Cronin, Meghan F. ; Curchitser, Enrique N. ; Davis, Russ E. ; Dengler, Marcus ; deYoung, Brad ; Dong, Shenfu ; Escribano, Ruben ; Fassbender, Andrea ; Fawcett, Sarah E. ; Feng, Ming ; Goni, Gustavo J. ; Gray, Alison R. ; Gutiérrez, Dimitri ; Hebert, Dave ; Hummels, Rebecca ; Ito, Shin-ichi ; Krug, Marjolaine ; Lacan, Francois ; Laurindo, Lucas ; Lazar, Alban ; Lee, Craig M. ; Lengaigne, Matthieu ; Levine, Naomi M. ; Middleton, John ; Montes, Ivonne ; Muglia, Michael ; Nagai, Takeyoshi ; Palevsky, Hilary I. ; Palter, Jaime B. ; Phillips, Helen E. ; Piola, Alberto R. ; Plueddemann, Albert J. ; Qiu, Bo ; Rodrigues, Regina ; Roughan, Moninya ; Rudnick, Daniel L. ; Rykaczewski, Ryan R. ; Saraceno, Martin ; Seim, Harvey E. ; Sen Gupta, Alexander ; Shannon, Lynne ; Sloyan, Bernadette M. ; Sutton, Adrienne J. ; Thompson, LuAnne ; van der Plas, Anja K. ; Volkov, Denis L. ; Wilkin, John L. ; Zhang, Dongxiao ; Zhang, Linlin
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.