Hawkings Jon

No Thumbnail Available
Last Name
Hawkings
First Name
Jon
ORCID
0000-0003-4813-8474

Search Results

Now showing 1 - 3 of 3
  • Article
    Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet
    (Nature Research, 2021-05-24) Hawkings, Jon ; Linhoff, Benjamin S. ; Wadham, Jemma L. ; Stibal, Marek ; Lamborg, Carl H. ; Carling, Gregory T. ; Lamarche-Gagnon, Guillaume ; Kohler, Tyler J. ; Ward, Rachael ; Hendry, Katharine R. ; Falteisek, Lukáš ; Kellerman, Anne M. ; Cameron, Karen A. ; Hatton, Jade E. ; Tingey, Sarah ; Holt, Amy D. ; Vinšová, Petra ; Hofer, Stefan ; Bulínová, Marie ; Větrovský, Tomáš ; Meire, Lorenz ; Spencer, Robert G. M.
    The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.
  • Article
    Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean
    (European Geosciences Union, 2021-02-18) Tréguer, Paul J. ; Sutton, Jill N. ; Brzezinski, Mark A. ; Charette, Matthew A. ; DeVries, Timothy ; Dutkiewicz, Stephanie ; Ehlert, Claudia ; Hawkings, Jon ; Leynaert, Aude ; Liu, Su Mei ; Llopis Monferrer, Natalia ; López-Acosta, María ; Maldonado, Manuel ; Rahman, Shaily ; Ran, Lihua ; Rouxel, Olivier
    The element silicon (Si) is required for the growth of silicified organisms in marine environments, such as diatoms. These organisms consume vast amounts of Si together with N, P, and C, connecting the biogeochemical cycles of these elements. Thus, understanding the Si cycle in the ocean is critical for understanding wider issues such as carbon sequestration by the ocean's biological pump. In this review, we show that recent advances in process studies indicate that total Si inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. We also update the total ocean silicic acid inventory value, which is about 24 % higher than previously estimated. These changes are significant, modifying factors such as the geochemical residence time of Si, which is now about 8000 years, 2 times faster than previously assumed. In addition, we present an updated value of the global annual pelagic biogenic silica production (255 Tmol Si yr−1) based on new data from 49 field studies and 18 model outputs, and we provide a first estimate of the global annual benthic biogenic silica production due to sponges (6 Tmol Si yr−1). Given these important modifications, we hypothesize that the modern ocean Si cycle is at approximately steady state with inputs =14.8(±2.6) Tmol Si yr−1 and outputs =15.6(±2.4) Tmol Si yr−1. Potential impacts of global change on the marine Si cycle are discussed.
  • Article
    Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica
    (American Geophysical Union, 2023-04-26) Venturelli, Ryan A. ; Boehman, Brenna ; Davis, Christina ; Hawkings, Jon R. ; Johnston, Sarah E. ; Gustafson, Chloe D. ; Michaud, Alexander B. ; Mosbeux, Cyrille ; Siegfried, Matthew R. ; Vick‐Majors, Trista J. ; Galy, Valier ; Spencer, Robert G. M. ; Warny, Sophie ; Christner, Brent C. ; Fricker, Helen A. ; Harwood, David M. ; Leventer, Amy ; Priscu, John C. ; Rosenheim, Brad E.
    Projections of Antarctica's contribution to future sea level rise are associated with significant uncertainty, in part because the observational record is too short to capture long‐term processes necessary to estimate ice mass changes over societally relevant timescales. Records of grounding line retreat from the geologic past offer an opportunity to extend our observations of these processes beyond the modern record and to gain a more comprehensive understanding of ice‐sheet change. Here, we present constraints on the timing and inland extent of deglacial grounding line retreat in the southern Ross Sea, Antarctica, obtained via direct sampling of a subglacial lake located 150 km inland from the modern grounding line and beneath >1 km of ice. Isotopic measurements of water and sediment from the lake enabled us to evaluate how the subglacial microbial community accessed radiocarbon‐bearing organic carbon for energy, as well as where it transferred carbon metabolically. Using radiocarbon as a natural tracer, we found that sedimentary organic carbon was microbially translocated to dissolved carbon pools in the subglacial hydrologic system during the 4.5‐year period of water accumulation prior to our sampling. This finding indicates that the grounding line along the Siple Coast of West Antarctica retreated more than 250 km inland during the mid‐Holocene (6.3 ± 1.0 ka), prior to re‐advancing to its modern position.