Farmer David M.

No Thumbnail Available
Last Name
Farmer
First Name
David M.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    The formation and fate of internal waves in the South China Sea
    ( 2015-03) Alford, Matthew H. ; Peacock, Thomas ; MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Buijsman, Maarten C. ; Centurioni, Luca R. ; Chao, Shenn-Yu ; Chang, Ming-Huei ; Farmer, David M. ; Fringer, Oliver B. ; Fu, Ke-Hsien ; Gallacher, Patrick C. ; Graber, Hans C. ; Helfrich, Karl R. ; Jachec, Steven M. ; Jackson, Christopher R. ; Klymak, Jody M. ; Ko, Dong S. ; Jan, Sen ; Johnston, T. M. Shaun ; Legg, Sonya ; Lee, I-Huan ; Lien, Ren-Chieh ; Mercier, Matthieu J. ; Moum, James N. ; Musgrave, Ruth C. ; Park, Jae-Hun ; Pickering, Andrew I. ; Pinkel, Robert ; Rainville, Luc ; Ramp, Steven R. ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Scotti, Alberto ; Simmons, Harper L. ; St Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Wang, Yu-Huai ; Wang, Joe ; Yang, Yiing-Jang ; Paluszkiewicz, Theresa ; Tang, Tswen Yung
    Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they impact a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for manmade structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, posing severe challenges for their observation and their inclusion in numerical climate models, which are sensitive to their effects6-7. Over a decade of studies8-11 have targeted the South China Sea, where the oceans’ most powerful internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their generation mechanism, variability and energy budget, however, due to the lack of in-situ data from the Luzon Strait, where extreme flow conditions make measurements challenging. Here we employ new observations and numerical models to (i) show that the waves begin as sinusoidal disturbances rather than from sharp hydraulic phenomena, (ii) reveal the existence of >200-m-high breaking internal waves in the generation region that give rise to turbulence levels >10,000 times that in the open ocean, (iii) determine that the Kuroshio western boundary current significantly refracts the internal wave field emanating from the Luzon Strait, and (iv) demonstrate a factor-of-two agreement between modelled and observed energy fluxes that enables the first observationally-supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
  • Article
    Acoustical measurement of nonlinear internal waves using the inverted echo sounder
    (American Meteorological Society, 2009-10) Li, Qiang ; Farmer, David M. ; Duda, Timothy F. ; Ramp, Steven R.
    The performance of pressure sensor–equipped inverted echo sounders for monitoring nonlinear internal waves is examined. The inverted echo sounder measures the round-trip acoustic travel time from the sea floor to the sea surface and thus acquires vertically integrated information on the thermal structure, from which the first baroclinic mode of thermocline motion may be inferred. This application of the technology differs from previous uses in that the wave period (30 min) is short, requiring a more rapid transmission rate and a different approach to the analysis. Sources of error affecting instrument performance include tidal effects, barotropic adjustment to internal waves, ambient acoustic noise, and sea surface roughness. The latter two effects are explored with a simulation that includes surface wave reconstruction, acoustic scattering based on the Kirchhoff approximation, wind-generated noise, sound propagation, and the instrument’s signal processing circuitry. Bias is introduced as a function of wind speed, but the simulation provides a basis for bias correction. The assumption that the waves do not significantly affect the mean stratification allows for a focus on the dynamic response. Model calculations are compared with observations in the South China Sea by using nearby temperature measurements to provide a test of instrument performance. After applying corrections for ambient noise and surface roughness effects, the inverted echo sounder exhibits an RMS variability of approximately 4 m in the estimated depth of the eigenfunction maximum in the wind speed range 0 ≤ U10 ≤ 10 m s−1. This uncertainty may be compared with isopycnal excursions for nonlinear internal waves of 100 m, showing that the observational approach is effective for measurements of nonlinear internal waves in this environment.
  • Article
    Tidal fronts and their role in air-sea gas exchange
    (Sears Foundation for Marine Research, 2006-07) Baschek, Burkard ; Farmer, David M. ; Garrett, Christopher
    Tidal fronts are a common feature of many coastal environments. They are characterized by a surface convergence zone that enhances wave breaking and the generation of gas bubbles due to wave-current interaction. The associated downwelling currents carry bubbles to depths of up to 160 m and increase the amount of air that dissolves from them. An energetic tidal front is formed at the entrance to the Strait of Georgia, BC, Canada, by a hydraulically controlled sill flow with vertical velocities of up to 0.75 m s−1. Extensive ship-board measurements during two cruises are interpreted with models of wave-current interaction and gas bubble behavior. The observations suggest that tidal fronts may contribute significantly to the aeration of the subsurface waters in the Fraser Estuary. This process may be also of importance for other coastal environments with plunging sill flows of dense water that deliver aerated surface water to intermediate depths.
  • Article
    An International Quiet Ocean Experiment
    (Oceanography Society, 2011-06) Boyd, Ian L. ; Frisk, George V. ; Urban, Edward ; Tyack, Peter L. ; Ausubel, Jesse ; Seeyave, Sphie ; Cato, Doug ; Southall, Brandon L. ; Weise, Michael ; Andrew, Rex K. ; Akamatsu, Tomonari ; Dekeling, Rene ; Erbe, Christine ; Farmer, David M. ; Gentry, Roger ; Gross, Thomas F. ; Hawkins, Anthony D. ; Li, Fenghua ; Metcalf, Kathy ; Miller, James H. ; Moretti, David J. ; Rodrigo, Cristian ; Shinke, Tomio
    The effect of noise on marine life is one of the big unknowns of current marine science. Considerable evidence exists that the human contribution to ocean noise has increased during the past few decades: human noise has become the dominant component of marine noise in some regions, and noise is directly correlated with the increasing industrialization of the ocean. Sound is an important factor in the lives of many marine organisms, and theory and increasing observations suggest that human noise could be approaching levels at which negative effects on marine life may be occurring. Certain species already show symptoms of the effects of sound. Although some of these effects are acute and rare, chronic sublethal effects may be more prevalent, but are difficult to measure. We need to identify the thresholds of such effects for different species and be in a position to predict how increasing anthropogenic sound will add to the effects. To achieve such predictive capabilities, the Scientific Committee on Oceanic Research (SCOR) and the Partnership for Observation of the Global Oceans (POGO) are developing an International Quiet Ocean Experiment (IQOE), with the objective of coordinating the international research community to both quantify the ocean soundscape and examine the functional relationship between sound and the viability of key marine organisms. SCOR and POGO will convene an open science meeting to gather community input on the important research, observations, and modeling activities that should be included in IQOE.