Matsumoto
Haru
Matsumoto
Haru
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleFlux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano(American Geophysical Union, 2012-11-29) Dziak, Robert P. ; Baker, Edward T. ; Shaw, Alison M. ; Bohnenstiehl, DelWayne R. ; Chadwick, William W. ; Haxel, Joseph H. ; Matsumoto, Haru ; Walker, Sharon L.The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
-
ArticleEvidence of a recent magma dike intrusion at the slow spreading Lucky Strike segment, Mid-Atlantic Ridge(American Geophysical Union, 2004-12-04) Dziak, Robert P. ; Smith, Deborah K. ; Bohnenstiehl, DelWayne R. ; Fox, Christopher G. ; Desbruyeres, Daniel ; Matsumoto, Haru ; Tolstoy, Maya ; Fornari, Daniel J.Mid-ocean ridge volcanic activity is the fundamental process for creation of ocean crust, yet the dynamics of magma emplacement along the slow spreading Mid-Atlantic Ridge (MAR) are largely unknown. We present acoustical, seismological, and biological evidence of a magmatic dike intrusion at the Lucky Strike segment, the first detected from the deeper sections (>1500 m) of the MAR. The dike caused the largest teleseismic earthquake swarm recorded at Lucky Strike in >20 years of seismic monitoring, and one of the largest ever recorded on the northern MAR. Hydrophone records indicate that the rate of earthquake activity decays in a nontectonic manner and that the onset of the swarm was accompanied by 30 min of broadband (>3 Hz) intrusion tremor, suggesting a volcanic origin. Two submersible investigations of high-temperature vents located at the summit of Lucky Strike Seamount 3 months and 1 year after the swarm showed a significant increase in microbial activity and diffuse venting. This magmatic episode may represent one form of volcanism along the MAR, where highly focused pockets of magma are intruded sporadically into the shallow ocean crust beneath long-lived, discrete volcanic structures recharging preexisting seafloor hydrothermal vents and ecosystems.