Johnson Maggie D.

No Thumbnail Available
Last Name
Johnson
First Name
Maggie D.
ORCID
0000-0002-1319-2545

Search Results

Now showing 1 - 5 of 5
  • Article
    Responses of benthic calcifying algae to ocean acidification differ between laboratory and field settings
    (Oxford University Press, 2021-12-09) Page, Heather N. ; Bahr, Keisha D. ; Cyronak, Tyler J. ; Jewett, Elizabeth B. ; Johnson, Maggie D. ; McCoy, Sophie J.
    Accurately predicting the effects of ocean and coastal acidification on marine ecosystems requires understanding how responses scale from laboratory experiments to the natural world. Using benthic calcifying macroalgae as a model system, we performed a semi-quantitative synthesis to compare directional responses between laboratory experiments and field studies. Variability in ecological, spatial, and temporal scales across studies, and the disparity in the number of responses documented in laboratory and field settings, make direct comparisons difficult. Despite these differences, some responses, including community-level measurements, were consistent across laboratory and field studies. However, there were also mismatches in the directionality of many responses with more negative acidification impacts reported in laboratory experiments. Recommendations to improve our ability to scale responses include: (i) developing novel approaches to allow measurements of the same responses in laboratory and field settings, and (ii) researching understudied calcifying benthic macroalgal species and responses. Incorporating these guidelines into research programs will yield data more suitable for robust meta-analyses and will facilitate the development of ecosystem models that incorporate proper scaling of organismal responses to in situ acidification. This, in turn, will allow for more accurate predictions of future changes in ecosystem health and function in a rapidly changing natural climate.
  • Article
    Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance
    (Nature Research, 2021-11-30) Johnson, Maggie D. ; Swaminathan, Sara D. ; Nixon, Emily N. ; Paul, Valerie J. ; Altieri, Andrew
    Ocean deoxygenation threatens the persistence of coastal ecosystems worldwide. Despite an increasing awareness that coastal deoxygenation impacts tropical habitats, there remains a paucity of empirical data on the effects of oxygen limitation on reef-building corals. To address this knowledge gap, we conducted laboratory experiments with ecologically important Caribbean corals Acropora cervicornis and Orbicella faveolata. We tested the effects of continuous exposure to conditions ranging from extreme deoxygenation to normoxia (~ 1.0 to 6.25 mg L−1 dissolved oxygen) on coral bleaching, photophysiology, and survival. Coral species demonstrated markedly different temporal resistance to deoxygenation, and within a species there were minimal genotype-specific treatment effects. Acropora cervicornis suffered tissue loss and mortality within a day of exposure to severe deoxygenation (~ 1.0 mg L−1), whereas O. faveolata remained unaffected after 11 days of continuous exposure to 1.0 mg L−1. Intermediate deoxygenation treatments (~ 2.25 mg L−1, ~ 4.25 mg L−1) elicited minimal responses in both species, indicating a low oxygen threshold for coral mortality and coral resilience to oxygen concentrations that are lethal for other marine organisms. These findings demonstrate the potential for variability in species-specific hypoxia thresholds, which has important implications for our ability to predict how coral reefs may be affected as ocean deoxygenation intensifies. With deoxygenation emerging as a critical threat to tropical habitats, there is an urgent need to incorporate deoxygenation into coral reef research, management, and action plans to facilitate better stewardship of coral reefs in an era of rapid environmental change.
  • Preprint
    Brilliantia kiribatiensis, a new genus and species of Cladophorales (Chlorophyta) from the remote coral reefs of the Southern Line Islands, Pacific Ocean
    (Wiley, 2021-12-12) Leliaert, Frederik ; Kelly, Emily L. A. ; Janouškovec, Jan ; Fox, Michael D. ; Johnson, Maggie D. ; Redfern, Farran M. ; Eria, Taati ; Haas, Andreas F. ; Sala, Enric ; Sandin, Stuart A. ; Smith, Jennifer E.
    The marine green alga Brilliantia kiribatiensis gen. et sp. nov. is described from samples collected from the coral reefs of the Southern Line Islands, Republic of Kiribati, Pacific Ocean. Phylogenetic analysis of sequences of the large- and small-subunit rDNA and the rDNA internal transcribed spacer region revealed that Brilliantia is a member of the Boodleaceae (Cladophorales), containing the genera Apjohnia, Boodlea, Cladophoropsis, Chamaedoris, Phyllodictyon, and Struvea. Within this clade it formed a distinct lineage, sister to Struvea elegans, but more distantly related to the bona fide Struvea species (including the type S. plumosa). Brilliantia differs from the other genera by having a very simple architecture forming upright, unbranched, single-celled filaments attached to the substratum by a rhizoidal mat. Cell division occurs by segregative cell division only at the onset of reproduction. Based on current sample collection, B. kiribatiensis seems to be largely restricted to the Southern Line Islands, although it was also observed on neighboring islands, including Orona Atoll in the Phoenix Islands of Kiribati, and the Rangiroa and Takapoto Atolls in the Tuamotus of French Polynesia. This discovery highlights the likeliness that there is still much biodiversity yet to be discovered from these remote and pristine reefs of the central Pacific.
  • Article
    Ecophysiology of coral reef primary producers across an upwelling gradient in the tropical central Pacific
    (Public Library of Science, 2020-02-04) Johnson, Maggie D. ; Fox, Michael D. ; Kelly, Emily L. A. ; Zgliczynski, Brian J. ; Sandin, Stuart A. ; Smith, Jennifer E.
    Upwelling is an important source of inorganic nutrients in marine systems, yet little is known about how gradients in upwelling affect primary producers on coral reefs. The Southern Line Islands span a natural gradient of inorganic nutrient concentrations across the equatorial upwelling region in the central Pacific. We used this gradient to test the hypothesis that benthic autotroph ecophysiology is enhanced on nutrient-enriched reefs. We measured metabolism and photophysiology of common benthic taxa, including the algae Porolithon, Avrainvillea, and Halimeda, and the corals Pocillopora and Montipora. We found that temperature (27.2–28.7°C) was inversely related to dissolved inorganic nitrogen (0.46–4.63 μM) and surface chlorophyll a concentrations (0.108–0.147 mg m-3), which increased near the equator. Contrary to our prediction, ecophysiology did not consistently track these patterns in all taxa. Though metabolic rates were generally variable, Porolithon and Avrainvillea photosynthesis was highest at the most productive and equatorial island (northernmost). Porolithon photosynthetic rates also generally increased with proximity to the equator. Photophysiology (maximum quantum yield) increased near the equator and was highest at northern islands in all taxa. Photosynthetic pigments also were variable, but chlorophyll a and carotenoids in Avrainvillea and Montipora were highest at the northern islands. Phycobilin pigments of Porolithon responded most consistently across the upwelling gradient, with higher phycoerythrin concentrations closer to the equator. Our findings demonstrate that the effects of in situ nutrient enrichment on benthic autotrophs may be more complex than laboratory experiments indicate. While upwelling is an important feature in some reef ecosystems, ancillary factors may regulate the associated consequences of nutrient enrichment on benthic reef organisms.
  • Article
    Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef
    (Nature Research, 2021-07-26) Johnson, Maggie D. ; Scott, Jarrod J. ; Leray, Matthieu ; Lucey, Noelle ; Rodriguez Bravo, Lucia M. ; Wied, William L. ; Altieri, Andrew H.
    Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.