Gilbert
Lisa A.
Gilbert
Lisa A.
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleDepth-shifting cores incompletely recovered from the upper oceanic crust, IODP Hole 1256D(American Geophysical Union, 2008-08-09) Gilbert, Lisa A. ; Burke, AndreaSeafloor drilling operations, especially those in crustal rocks, yield incomplete recovery of drilled sections, and depths of the recovered core pieces are assigned with some uncertainty. Here we present a new depth-shifting method that is simple and rapid, requires little subjective input, and is applicable to any core-log integration problem where sufficient comparable data have been collected in both the open hole and from the recovered core. Over the depth range for which both core and log data have been collected, an automatic algorithm selected the best new depth for each piece. The criteria for determining the best depth were as follows: (1) find new depths for as many pieces as possible, and (2) minimize the difference between core density and log density. In this study, depth-shifting is applied at Integrated Ocean Drilling Program (IODP) Hole 1256D, which is our first opportunity to study a section of intact, in situ upper ocean crust drilled down to gabbro. The new depths significantly improve the agreement between an independent data set and the logging record.
-
ArticleVelocity structure of upper ocean crust at Ocean Drilling Program Site 1256(American Geophysical Union, 2008-10-16) Swift, Stephen A. ; Reichow, Marc ; Tikku, Anahita ; Tominaga, Masako ; Gilbert, Lisa A.We examine shipboard physical property measurements, wireline logs, and vertical seismic profiles (VSP) from Ocean Drilling Program/Integrated Ocean Drilling Program Hole 1256D in 15 Ma ocean crust formed at superfast spreading rates to investigate lateral and vertical variations in compressional velocity. In general, velocities from all methods agree. Porosity is inversely related to velocity in both the logging and laboratory data. We infer that microfracturing during drilling is minor in the upper 1 km of basement, probably due to connected pores and, thus, low effective stress. The closure of porosity to very low values coincides with the depth below which laboratory velocities diverge from logging velocities. We infer that porosity controls velocity in layer 2, lithostatic pressure controls the thickness of seismic layer 2, and the distribution of flow types determines seismic velocity in the upper 200 m of basement. In the sheeted dikes, changes in physical properties, mineralogy, and chemistry define clusters of dikes.