Iacono
Roberto
Iacono
Roberto
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
ArticleThe skirted island : the effect of topography on the flow around planetary scale islands(Sears Foundation for Marine Research, 2009-09) Pedlosky, Joseph ; Iacono, Roberto ; Napolitano, Ernesto ; Helfrich, Karl R.The flow around planetary scale islands is examined when the island possesses a topographic skirt representing a steep continental shelf. The model is barotropic and governed by the shallow water equations and the motion is driven by a wind stress with a constant curl. The presence of the strong topographic "skirt" around the island vitiates the elegant Island Rule of Godfrey and the closed potential vorticity contours around the island produced by the topography allow a geostrophic, stationary mode to resonate with an amplitude that is limited only by dissipation. In the limit of weak forcing the outline of the outermost closed potential vorticity isoline essentially replaces the island shape and determines the flow beyond that contour. Stronger nonlinearity produces substantial changes in the flow pattern as well as the transports trapped on the closed contours and the transport between the island and the basin boundary. Laboratory experiments, numerical calculations and analytical results are presented describing the structure of the flow. A western standing meander at the edge of the island's topography involves a rapid change in the direction of flow and this feature, predicted by analytical and numerical calculations is confirmed in laboratory experiments. As the measure of nonlinearity is increased beyond a threshold that depends on the ratio of the inertial boundary layer thickness to the Munk layer thickness the flow becomes time dependent and a strong eddy field emerges. The transports on the closed contours and the inter-basin exchange outside the closed potential vorticity contours show an enhancement over the linear analytical approximation as nonlinearity increases.
-
ArticleThe two-layer skirted island(Yale University, 2011-09-30) Pedlosky, Joseph ; Iacono, Roberto ; Napolitano, Ernesto ; Spall, Michael A.The flow around a planetary scale island in a baroclinic ocean is examined when the island possesses a topographic skirt representing a steep continental slope and the ocean is modeled as a two-layer system in order to examine the role of stratification in the circulation. The study extends an earlier barotropic model of similar geometry and forcing to focus on the degree to which the topography, limited here to the lower of the two layers, affects the circulation and to what degree the circulation is shielded by stratification from the topographic effects noted in the simpler barotropic model. As in the barotropic model, the topography is steep enough to produce closed, ambient potential vorticity contours over the topography in the lower layer providing free "highways" for the deep flow in the presence of small forcing by the wind-driven upper layer flow. The flow is very weak outside the region of closed contours but can become of the same order, if somewhat smaller, as the upper layer flow on those contours in the presence of even weak coupling to the upper layer. A series of models, analytical and numerical, are studied. Linear theory is applied to two configurations. The first consists of a long, meridionally oriented island with a topographic skirt in the lower layer. The lower layer flow is driven by a hypothesized frictional coupling between the two layers that depends on the circulation of the upper layer velocity on a circuit defined by the closed potential vorticity contours of the lower layer. The largest part of the driving flow is identical on both sides of the island and cancels in the contour integration. The major part of the residual forcing comes from relatively small but effective forcing on the semi-circular tips of the topographic skirt. A circular island with a topographic skirt is also examined in which the coupling to the upper layer is stronger all around the island. Even in this case there is a delicate balance of the forcing of the lower layer on each side of the island. In all cases the flow on closed potential vorticity contours in the lower layer is much weaker than in the barotropic model but much stronger than in the flat region of the lower layer. A sequence of numerical calculations that both check and extend the analytic linear theory is presented demonstrating the subtlety of the force balances. Further nonlinear, eddy-containing experiments give a preview of the direction of future work.
-
ArticleReviewing the state of biosensors and lab-on-a- chip technologies: Opportunities for extreme environments and space exploration(Frontiers Media, 2023-08-16) Cinti, Stefano ; Singh, Sima ; Covone, Giovanni ; Tonietti, Luca ; Ricciardelli, Annarita ; Cordone, Angelina ; Iacono, Roberta ; Mazzoli, Arianna ; Moracci, Marco ; Rotundi, AlessandraThe space race is entering a new era of exploration, in which the number of robotic and human missions to various places in our solar system is rapidly increasing. Despite the recent advances in propulsion and life support technologies, there is a growing need to perform analytical measurements and laboratory experiments across diverse domains of science, while keeping low payload requirements. In this context, lab-on-a-chip nanobiosensors appear to be an emerging technology capable of revolutionizing space exploration, given their low footprint, high accuracy, and low payload requirements. To date, only some approaches for monitoring astronaut health in spacecraft environments have been reported. Although non-invasive molecular diagnostics, like lab-on-a-chip technology, are expected to improve the quality of long-term space missions, their application to monitor microbiological and environmental variables is rarely reported, even for analogous extreme environments on Earth. The possibility of evaluating the occurrence of unknown or unexpected species, identifying redox gradients relevant to microbial metabolism, or testing for specific possible biosignatures, will play a key role in the future of space microbiology. In this review, we will examine the current and potential roles of lab-on-a-chip technology in space exploration and in extreme environment investigation, reporting what has been tested so far, and clarifying the direction toward which the newly developed technologies of portable lab-on-a-chip sensors are heading for exploration in extreme environments and in space.