Lammers Marc O.

No Thumbnail Available
Last Name
Lammers
First Name
Marc O.
ORCID

Search Results

Now showing 1 - 11 of 11
  • Article
    Auditory sensitivity in aquatic animals
    (Acoustical Society of America, 2016-06-08) Lucke, Klaus ; Popper, Arthur N. ; Hawkins, Anthony D. ; Akamatsu, Tomonari ; Andre, Michel ; Branstetter, Brian K. ; Lammers, Marc O. ; Radford, Craig A. ; Stansbury, Amanda L. ; Mooney, T. Aran
    A critical concern with respect to marine animal acoustics is the issue of hearing “sensitivity,” as it is widely used as a criterion for the onset of noise-induced effects. Important aspects of research on sensitivity to sound by marine animals include: uncertainties regarding how well these species detect and respond to different sounds; the masking effects of man-made sounds on the detection of biologically important sounds; the question how internal state, motivation, context, and previous experience affect their behavioral responses; and the long-term and cumulative effects of sound exposure. If we are to better understand the sensitivity of marine animals to sound we must concentrate research on these questions. In order to assess population level and ecological community impacts new approaches can possibly be adopted from other disciplines and applied to marine fauna.
  • Article
    Fluctuations in Hawaii's humpback whale Megaptera novaeangliae population inferred from male song chorusing off Maui
    (Inter Research, 2020-12-17) Kügler, Anke ; Lammers, Marc O. ; Zang, Eden ; Kaplan, Maxwell B. ; Mooney, T. Aran
    Approximately half of the North Pacific humpback whale Megaptera novaeangliae stock visits the shallow waters of the main Hawaiian Islands seasonally. Within this breeding area, mature males produce an elaborate acoustic display known as song, which becomes the dominant source of ambient underwater sound between December and April. Following reports of unusually low whale numbers that began in 2015/16, we examined song chorusing recorded through long-term passive acoustic monitoring at 6 sites off Maui as a proxy for relative whale abundance between 2014 and 2019. Daily root-mean-square sound pressure levels (RMS SPLs) were calculated to compare variations in low-frequency acoustic energy (0-1.5 kHz). After 2014/15, the overall RMS SPLs decreased between 5.6 and 9.7 dB re 1 µPa2 during the peak of whale season (February and March), reducing ambient acoustic energy from chorusing by over 50%. This change in song levels co-occurred with a broad-scale oceanic heat wave in the northeast Pacific termed the ‘Blob,’ a major El Niño event in the North Pacific, and a warming period in the Pacific Decadal Oscillation cycle. Although it remains unclear whether our observations reflect a decrease in population size, a change in migration patterns, a shift in distribution to other areas, a change in the behavior of males, or some combination of these, our results indicate that continued monitoring and further studies of humpback whales throughout the North Pacific are warranted to better understand the fluctuations occurring in this recently recovered population and other populations that continue to be endangered or threatened.
  • Article
    Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores
    (Nature Research, 2020-02-27) Cascão, Irma ; Lammers, Marc O. ; Prieto, Rui ; Santos, Ricardo S. ; Silva, Monica A.
    Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March–May 2008 and April 2010–February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in >87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.
  • Preprint
    Singing whales generate high levels of particle motion : implications for acoustic communication and hearing?
    ( 2016-10) Mooney, T. Aran ; Kaplan, Maxwell B. ; Lammers, Marc O.
    Acoustic signals are fundamental to animal communication and cetaceans are often considered bioacoustic specialists. Nearly all studies of their acoustic communication focus on sound pressure measurements, overlooking the particle motion components of their communication signals. Here we characterize the levels of acoustic particle velocity (and pressure) of song produced by humpback whales. We demonstrate that whales generate acoustic fields that include significant particle velocity components that are detectable over relatively long distances sufficient to play a role in acoustic communication. We show that these signals attenuate predictably in a manner similar to pressure and that direct particle velocity measurements can provide bearings to singing whales. Whales could potentially use such information to determine the distance of signaling animals. Additionally, the vibratory nature of particle velocity may stimulate bone conduction, a hearing modality similar to other low-frequency specialized mammals, offering a parsimonious mechanism of acoustic energy transduction into the massive ossicles of whale ears. With substantial concerns regarding the effects of increasing anthropogenic ocean noise and major uncertainties surrounding mysticete hearing, these results highlight both an unexplored avenue that may be available for whale acoustic communication and the need to better understand the biological role of acoustic particle motion.
  • Preprint
    Macro- and micro-geographic variation of short-beaked common dolphin’s whistles in the Mediterranean Sea and Atlantic Ocean
    ( 2013-09) Papale, Elena B. ; Azzolin, Marta A. ; Cascao, Irma ; Gannier, Alexandre ; Lammers, Marc O. ; Martin, Vidal M. ; Oswald, Julie N. ; Perez-Gil, Monica ; Prieto, Rui ; Silva, Monica A. ; Giacoma, Cristina
    Genetic studies have shown that there are small but significant differences between the short-beaked common dolphin populations in the Atlantic Ocean and those in the Mediterranean Sea. The short-beaked common dolphin is a highly vocal species with a wide sound production repertoire including whistles. Whistles are continuous, narrowband, frequency-modulated signals that can show geographic variation in dolphin species. This study tests whether the differences, highlighted by genetic studies, are recognisable in the acoustic features of short-beaked common dolphin’s whistles in the two adjacent areas of the Atlantic Ocean and the Mediterranean Sea. From a selected sample of good quality whistles (514 recorded in the Atlantic and 193 in the Mediterranean) 10 parameters of duration, frequency and frequency modulation were measured. Comparing data among basins, differences were found for duration and all frequency parameters except for minimum frequency. Modulation parameters showed the highest coefficient of variation. Through discriminant analysis we correctly assigned 75.7% of sounds to their basins. Furthermore, micro-geographic analysis revealed similarity between the sounds recorded around the Azores and the Canary archipelagos and between the Bay of Biscay and the Mediterranean Sea. Results are in agreement with the hypothesis proposed by previous genetic studies that two distinct populations are present, still supposing a gene flow between the basins. This study is the first to compare shortbeaked common dolphin’s whistles of the Atlantic Ocean and the Mediterranean areas.
  • Article
    Baleen whale acoustic presence and behaviour at a Mid-Atlantic migratory habitat, the Azores Archipelago
    (Nature Research, 2020-03-16) Romagosa Verges, Miriam ; Baumgartner, Mark F. ; Cascão, Irma ; Lammers, Marc O. ; Marques, Tiago A. ; Santos, Ricardo S. ; Silva, Monica A.
    The identification of important areas during the annual life cycle of migratory animals, such as baleen whales, is vital for their conservation. In boreal springtime, fin and blue whales feed in the Azores on their way to northern latitudes while sei whales migrate through the archipelago with only occasional feeding. Little is known about their autumn or winter presence or their acoustic behaviour in temperate migratory habitats. This study used a 5-year acoustic data set collected by autonomous recorders in the Azores that were processed and analysed using an automated call detection and classification system. Fin and blue whales were acoustically present in the archipelago from autumn to spring with marked seasonal differences in the use of different call types. Diel patterns of calling activity were only found for fin whales with more calls during the day than night. Sei whales showed a bimodal distribution of acoustic presence in spring and autumn, corresponding to their expected migration patterns. Diel differences in sei whale calling varied with season and location. This work highlights the importance of the Azores as a migratory and wintering habitat for three species of baleen whales and provides novel information on their acoustic behaviour in a mid-Atlantic region.
  • Article
    Sounding the call for a global library of underwater biological sounds
    (Frontiers Media, 2022-02-08) Parsons, Miles J. G. ; Lin, Tzu-Hao ; Mooney, T. Aran ; Erbe, Christine ; Juanes, Francis ; Lammers, Marc O. ; Li, Songhai ; Linke, Simon ; Looby, Audrey ; Nedelec, Sophie L. ; Van Opzeeland, Ilse ; Radford, Craig A. ; Rice, Aaron N. ; Sayigh, Laela S. ; Stanley, Jenni A. ; Urban, Edward ; Di Iorio, Lucia
    Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.
  • Preprint
    Acoustic and biological trends on coral reefs off Maui, Hawaii
    ( 2017-11) Kaplan, Maxwell B. ; Lammers, Marc O. ; Zang, Eden ; Mooney, T. Aran
    Coral reefs are characterized by high biodiversity and evidence suggests that reef soundscapes reflect local species assemblages. To investigate how sounds produced on a given reef relate to abiotic and biotic parameters and how that relationship may change over time, an observational study was conducted between September 2014 and January 2016 at seven Hawaiian reefs that varied in coral cover, rugosity, and fish assemblages. The reefs were equipped with temperature loggers and acoustic recording devices that recorded on a 10% duty cycle. Benthic and fish visual survey data were collected four times over the course of the study. On average, reefs ranged from 0 to 80% live coral cover, although changes between surveys were noted, in particular during the major El Niño-related bleaching event of October 2015. Acoustic analyses focused on two frequency bands (50–1200 Hz and 1.8–20.5 kHz) that corresponded to the dominant spectral features of the major sound-producing taxa on these reefs, fish and snapping shrimp, respectively. In the low-frequency band, the presence of humpback whales (December– May) was a major contributor to sound level, whereas in the high-frequency band sound level closely tracked water temperature. On shorter timescales, the magnitude of the diel trend in sound production was greater than that of the lunar trend, but both varied in strength among reefs, which may reflect differences in the species assemblages present. Results indicated that the magnitude of the diel trend was related to fish densities at low frequencies and coral cover at high frequencies; however, the strength of these relationships varied by season. Thus, long-term acoustic recordings capture the substantial acoustic variability present in coral-reef ecosystems and provide insight into the presence and relative abundance of sound-producing organisms.
  • Article
    Dolphin whistles can be useful tools in identifying units of conservation
    (BMC, 2021-07-29) Papale, Elena B. ; Azzolin, Marta A. ; Cascão, Irma ; Gannier, Alexandre ; Lammers, Marc O. ; Martin, Vidal M. ; Oswald, Julie N. ; Perez-Gil, Monica ; Prieto, Rui ; Silva, Mónica A. ; Torri, Marco ; Giacoma, Cristina
    Prioritizing groupings of organisms or ‘units’ below the species level is a critical issue for conservation purposes. Several techniques encompassing different time-frames, from genetics to ecological markers, have been considered to evaluate existing biological diversity at a sufficient temporal resolution to define conservation units. Given that acoustic signals are expressions of phenotypic diversity, their analysis may provide crucial information on current differentiation patterns within species. Here, we tested whether differences previously delineated within dolphin species based on i) geographic isolation, ii) genetics regardless isolation, and iii) habitat, regardless isolation and genetics, can be detected through acoustic monitoring. Recordings collected from 104 acoustic encounters of Stenella coeruleoalba, Delphinus delphis and Tursiops truncatus in the Azores, Canary Islands, the Alboran Sea and the Western Mediterranean basin between 1996 and 2012 were analyzed. The acoustic structure of communication signals was evaluated by analyzing parameters of whistles in relation to the known genetic and habitat-driven population structure.
  • Article
    Underwater ambient noise in a baleen whale migratory habitat off the Azores
    (Frontiers Media, 2017-04-25) Romagosa Verges, Miriam ; Cascão, Irma ; Merchant, Nathan D. ; Lammers, Marc O. ; Giacomello, Eva ; Marques, Tiago A. ; Silva, Monica A.
    Assessment of underwater noise is of particular interest given the increase in noise-generating human activities and the potential negative effects on marine mammals which depend on sound for many vital processes. The Azores archipelago is an important migratory and feeding habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei whales (Balaenoptera borealis) en route to summering grounds in northern Atlantic waters. High levels of low frequency noise in this area could displace whales or interfere with foraging behavior, impacting energy intake during a critical stage of their annual cycle. In this study, bottom-mounted Ecological Acoustic Recorders were deployed at three Azorean seamounts (Condor, Açores, and Gigante) to measure temporal variations in background noise levels and ship noise in the 18–1,000 Hz frequency band, used by baleen whales to emit and receive sounds. Monthly average noise levels ranged from 90.3 dB re 1 μPa (Açores seamount) to 103.1 dB re 1 μPa (Condor seamount) and local ship noise was present up to 13% of the recording time in Condor. At this location, average contribution of local boat noise to background noise levels is almost 10 dB higher than wind contribution, which might temporally affect detection ranges for baleen whale calls and difficult communication at long ranges. Given the low time percentatge with noise levels above 120 dB re 1 μPa found here (3.3% at Condor), we woud expect limited behavioral responses to ships from baleen whales. Sound pressure levels measured in the Azores are lower than those reported for the Mediterranean basin and the Strait of Gibraltar. However, the currently unknown effects of baleen whale vocalization masking and the increasing presence of boats at the monitored sites underline the need for continuous monitoring to understand any long-term impacts on whales.
  • Article
    Listening forward: approaching marine biodiversity assessments using acoustic methods
    (The Royal Society, 2020-08-26) Mooney, T. Aran ; Di Iorio, Lucia ; Lammers, Marc O. ; Lin, Tzu-Hao ; Nedelec, Sophie L. ; Parsons, Miles J. G. ; Radford, Craig A. ; Urban, Edward ; Stanley, Jenni A.
    Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.