Lacy Jessica R.

No Thumbnail Available
Last Name
Lacy
First Name
Jessica R.
ORCID
0000-0002-2797-6172

Search Results

Now showing 1 - 3 of 3
  • Article
    Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler
    (American Geophysical Union, 2005-06-30) Lacy, Jessica R. ; Sherwood, Christopher R. ; Wilson, Douglas J. ; Chisholm, Thomas A. ; Gelfenbaum, Guy R.
    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u *c and apparent bottom roughness z 0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness k B was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u *c converged with values determined from the data. The resulting k B values ranged over 3 orders of magnitude (10−1 to 10−4 m) and varied inversely with wave orbital diameter. This range of k B influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from k B and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment.
  • Article
    Cohesive sediment modeling in a shallow estuary: model and environmental implications of sediment parameter variation
    (American Geophysical Union, 2021-08-20) Allen, Rachel M. ; Lacy, Jessica R. ; Stevens, Andrew W.
    Numerical models of sediment transport in estuarine systems rely on parameter values that are often poorly constrained and can vary on timescales relevant to model processes. The selection of parameter values can affect the accuracy of model predictions, while environmental variation of these parameters can impact the temporal and spatial ranges of sediment fluxes, erosion, and deposition in the real world. We implemented a numerical model of San Pablo Bay, an embayment within San Francisco Bay, California, for November–December 2014, and compared model outputs to observations of water level, velocity, wave parameters, salinity, and suspended sediment concentration (SSC) in the shallow regions. Idealized model runs show that wind timing relative to the phase of the tides is the strongest control on sediment fluxes and bed erosion. We varied sediment erodibility in the outflow of the Petaluma River; while this causes erosion and deposition to vary strongly through the shallows system, total export from the shallows does not change. Model runs with realistic winds show that wind likely resuspends faster settling particles or allows for more particle flocculation; particle settling velocity controls system-wide sediment accumulation. At the margins of the system, the magnitude of SSC is closely tied to wind direction when winds occur during flood tide, but sediment deposition is less connected: Both bed evolution and SSC need to be considered in the prediction of marsh fate. Spatial patterns of light attenuation due to SSC is strongly tied to assumed settling velocity.
  • Article
    Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow
    (American Meteorological Society, 2004-09) Lacy, Jessica R. ; Sherwood, Christopher R.
    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s−1 and currents up to 40 cm s−1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is −0.4 cm s−1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s−1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s−1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s−1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ≥ 50 cm s−1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ≥ 5 cm s−1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.