Matsumoto K.

No Thumbnail Available
Last Name
Matsumoto
First Name
K.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Historical and idealized climate model experiments : an intercomparison of Earth system models of intermediate complexity
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-05-16) Eby, Michael ; Weaver, Andrew J. ; Alexander, K. ; Zickfeld, K. ; Abe-Ouchi, A. ; Cimatoribus, A. A. ; Crespin, E. ; Drijfhout, Sybren ; Edwards, N. R. ; Eliseev, A. V. ; Feulner, G. ; Fichefet, T. ; Forest, Chris E. ; Goosse, H. ; Holden, P. B. ; Joos, Fortunat ; Kawamiya, M. ; Kicklighter, David W. ; Kienert, H. ; Matsumoto, K. ; Mokhov, I. I. ; Monier, Erwan ; Olsen, Steffen M. ; Pedersen, J. O. P. ; Perrette, M. ; Philippon-Berthier, G. ; Ridgwell, Andy ; Schlosser, A. ; Schneider von Deimling, T. ; Shaffer, G. ; Smith, R. S. ; Spahni, R. ; Sokolov, Andrei P. ; Steinacher, M. ; Tachiiri, K. ; Tokos, K. ; Yoshimori, M. ; Zeng, Ning ; Zhao, F.
    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
  • Article
    Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
    (American Geophysical Union, 2007-08-08) Najjar, Raymond G. ; Jin, X. ; Louanchi, F. ; Aumont, Olivier ; Caldeira, Ken ; Doney, Scott C. ; Dutay, J.-C. ; Follows, Michael J. ; Gruber, Nicolas ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Matsumoto, K. ; Monfray, Patrick ; Mouchet, Anne ; Orr, James C. ; Plattner, Gian-Kasper ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.