Rasch Philip J.

No Thumbnail Available
Last Name
Rasch
First Name
Philip J.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The Community Climate System Model version 4
    (American Meteorological Society, 2011-10-01) Gent, Peter R. ; Danabasoglu, Gokhan ; Donner, Leo J. ; Holland, Marika M. ; Hunke, Elizabeth C. ; Jayne, Steven R. ; Lawrence, David M. ; Neale, Richard B. ; Rasch, Philip J. ; Vertenstein, Mariana ; Worley, Patrick H. ; Yang, Zong-Liang ; Zhang, Minghua
    The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Niño–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulation. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than CCSM3, and for several reasons the Arctic sea ice concentration is improved in CCSM4. An ensemble of twentieth-century simulations produces a good match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4°C. This is consistent with the fact that CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of shortwave and longwave cloud forcings.
  • Article
    Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate
    (Public Library of Science, 2018-01-25) Balaguru, Karthik ; Doney, Scott C. ; Bianucci, Laura ; Rasch, Philip J. ; Leung, L. Ruby ; Yoon, Jin-Ho ; Lima, Ivan D.
    Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region’s spring bloom by the end of the 21st century.