Best Benjamin D.

No Thumbnail Available
Last Name
Best
First Name
Benjamin D.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Striking the right balance in right whale conservation
    (NRC Research Press, 2009-08-14) Schick, Robert S. ; Halpin, Patrick N. ; Read, Andrew J. ; Slay, Christopher K. ; Kraus, Scott D. ; Mate, Bruce R. ; Baumgartner, Mark F. ; Roberts, Jason J. ; Best, Benjamin D. ; Good, Caroline P. ; Loarie, Scott R. ; Clark, James S.
    Despite many years of study and protection, the North Atlantic right whale (Eubalaena glacialis) remains on the brink of extinction. There is a crucial gap in our understanding of their habitat use in the migratory corridor along the eastern seaboard of the United States. Here, we characterize habitat suitability in migrating right whales in relation to depth, distance to shore, and the recently enacted ship speed regulations near major ports. We find that the range of suitable habitat exceeds previous estimates and that, as compared with the enacted 20 nautical mile buffer, the originally proposed 30 nautical mile buffer would protect more habitat for this critically endangered species.
  • Article
    Assessing the health of the U.S. west coast with a regional-scale application of the Ocean Health Index
    (Public Library of Science, 2014-06-18) Halpern, Benjamin S. ; Longo, Catherine ; Scarborough, Courtney ; Hardy, Darren ; Best, Benjamin D. ; Doney, Scott C. ; Katona, Steven K. ; McLeod, Karen L. ; Rosenberg, Andrew A. ; Samhouri, Jameal F.
    Management of marine ecosystems increasingly demands comprehensive and quantitative assessments of ocean health, but lacks a tool to do so. We applied the recently developed Ocean Health Index to assess ocean health in the relatively data-rich US west coast region. The overall region scored 71 out of 100, with sub-regions scoring from 65 (Washington) to 74 (Oregon). Highest scoring goals included tourism and recreation (99) and clean waters (87), while the lowest scoring goals were sense of place (48) and artisanal fishing opportunities (57). Surprisingly, even in this well-studied area data limitations precluded robust assessments of past trends in overall ocean health. Nonetheless, retrospective calculation of current status showed that many goals have declined, by up to 20%. In contrast, near-term future scores were on average 6% greater than current status across all goals and sub-regions. Application of hypothetical but realistic management scenarios illustrate how the Index can be used to predict and understand the tradeoffs among goals and consequences for overall ocean health. We illustrate and discuss how this index can be used to vet underlying assumptions and decisions with local stakeholders and decision-makers so that scores reflect regional knowledge, priorities and values. We also highlight the importance of ongoing and future monitoring that will provide robust data relevant to ocean health assessment.
  • Article
    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
    (John Wiley & Sons, 2018-03-06) Muller-Karger, Frank E. ; Hestir, Erin ; Ade, Christiana ; Turpie, Kevin ; Roberts, Dar A. ; Siegel, David A. ; Miller, Robert J. ; Humm, David ; Izenberg, Noam ; Keller, Mary ; Morgan, Frank ; Frouin, Robert ; Dekker, Arnold G. ; Gardner, Royal ; Goodman, James ; Schaeffer, Blake ; Franz, Bryan A. ; Pahlevan, Nima ; Mannino, Antonio ; Concha, Javier A. ; Ackleson, Steven G. ; Cavanaugh, Kyle C. ; Romanou, Anastasia ; Tzortziou, Maria ; Boss, Emmanuel S. ; Pavlick, Ryan ; Freeman, Anthony ; Rousseaux, Cecile S. ; Dunne, John P. ; Long, Matthew C. ; Salas, Eduardo Klein ; McKinley, Galen A. ; Goes, Joachim I. ; Letelier, Ricardo M. ; Kavanaugh, Maria T. ; Roffer, Mitchell ; Bracher, Astrid ; Arrigo, Kevin R. ; Dierssen, Heidi M. ; Zhang, Xiaodong ; Davis, Frank W. ; Best, Benjamin D. ; Guralnick, Robert P. ; Moisan, John R. ; Sosik, Heidi M. ; Kudela, Raphael M. ; Mouw, Colleen B. ; Barnard, Andrew H. ; Palacios, Sherry ; Roesler, Collin S. ; Drakou, Evangelia G. ; Appeltans, Ward ; Jetz, Walter
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.