Lin Peigen

No Thumbnail Available
Last Name
Lin
First Name
Peigen
ORCID
0000-0002-2410-976X

Search Results

Now showing 1 - 20 of 27
  • Article
    Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array
    (Elsevier, 2020-07-04) Lin, Peigen ; Pickart, Robert S. ; Fissel, David ; Ross, Ed ; Kasper, Jeremy L. ; Bahr, Frank B. ; Torres, Daniel J. ; O’Brien, Jeff ; Borg, Keath ; Melling, Humfrey ; Wiese, Francis K.
    Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
  • Article
    Time dependent flow of Atlantic water on the continental slope of the Beaufort Sea based on moorings
    (American Geophysical Union, 2021-05-26) Li, Jianqiang ; Lin, Peigen ; Pickart, Robert S. ; Yang, Xiao-Yi
    The flow and transformation of warm, salty Atlantic-origin water (AW) in the Arctic Ocean plays an important role in the global overturning circulation that helps regulate Earth's climate. The heat that it transports also impacts ice melt in different parts of the Arctic. This study uses data from a mooring array deployed across the shelf/slope of the Alaskan Beaufort Sea from 2002–2004 to investigate the flow of AW. A short-lived “rebound jet” of AW on the upper continental slope regularly follows wind-driven upwelling events. A total of 57 such events, lasting on average 3 days each, occurred over the 2 year period. As the easterly wind subsides, the rebound jet quickly spins up while the isopycnals continue to slump from their upwelled state. The strength of the jet is related to the cross-slope isopycnal displacement, which in turn is dependent on the magnitude of the wind, in line with previous modeling. Seaward of the rebound jet, the offshore-most mooring of the array measured the onshore branch of the AW boundary flowing eastward in the Canada Basin. However, the signature of the boundary current was only evident in the second year of the mooring timeseries. We suspect that this is due to the varying influence of the Beaufort Gyre in the two years, associated with a change in pattern of the wind stress curl that helps drive the gyre.
  • Article
    Mean and seasonal circulation of the eastern Chukchi Sea from moored timeseries in 2013-2014
    (American Geophysical Union, 2021-04-30) Tian, Fei ; Pickart, Robert S. ; Lin, Peigen ; Pacini, Astrid ; Moore, G. W. K. ; Stabeno, Phyllis J. ; Weingartner, Thomas J. ; Itoh, Motoyo ; Kikuchi, Takashi ; Dobbins, Elizabeth ; Bell, Shaun ; Woodgate, Rebecca ; Danielson, Seth L. ; Wang, Zhaomin
    From late-summer 2013 to late-summer 2014, a total of 20 moorings were maintained on the eastern Chukchi Sea shelf as part of five independent field programs. This provided the opportunity to analyze an extensive set of timeseries to obtain a broad view of the mean and seasonally varying hydrography and circulation over the course of the year. Year-long mean bottom temperatures reflected the presence of the strong coastal circulation pathway, while mean bottom salinities were influenced by polynya/lead activity along the coast. The timing of the warm water appearance in spring/summer is linked to advection along the various flow pathways. The timing of the cold water appearance in fall/winter was not reflective of advection nor related to the time of freeze-up. Near the latitude of Barrow Canyon, the cold water was accompanied by freshening. A one-dimensional mixed-layer model demonstrates that wind mixing, due to synoptic storms, overturns the water column resulting in the appearance of the cold water. The loitering pack ice in the region, together with warm southerly winds, melted ice and provided an intermittent source of fresh water that was mixed to depth according to the model. Farther north, the ambient stratification prohibits wind-driven overturning, hence the cold water arrives from the south. The circulation during the warm and cold months of the year is different in both strength and pattern. Our study highlights the multitude of factors involved in setting the seasonal cycle of hydrography and circulation on the Chukchi shelf.
  • Article
    Whither the Chukchi Slope Current?
    (American Meteorological Society, 2020-06-01) Boury, Samuel ; Pickart, Robert S. ; Odier, Philippe ; Lin, Peigen ; Li, Min ; Fine, Elizabeth C. ; Simmons, Harper L. ; MacKinnon, Jennifer A. ; Peacock, Thomas
    Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106 m3 s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.
  • Article
    The Atlantic Water boundary current in the Nansen Basin : transport and mechanisms of lateral exchange
    (John Wiley & Sons, 2016-09-22) Våge, Kjetil ; Pickart, Robert S. ; Pavlov, Vladimir ; Lin, Peigen ; Torres, Daniel J. ; Ingvaldsen, Randi B. ; Sundfjord, Arild ; Proshutinsky, Andrey
    Data from a shipboard hydrographic survey near 30°E in the Nansen Basin of the Arctic Ocean are used to investigate the structure and transport of the Atlantic Water boundary current. Two high-resolution synoptic crossings of the current indicate that it is roughly 30 km wide and weakly middepth-intensified. Using a previously determined definition of Atlantic Water, the transport of this water mass is calculated to be 1.6 ± 0.3 Sv, which is similar to the transport of Atlantic Water in the inner branch of the West Spitsbergen Current. At the time of the survey a small anticyclonic eddy of Atlantic Water was situated just offshore of the boundary current. The data suggest that the feature was recently detached from the boundary current, and, due to compensating effects of temperature and salinity on the thermal wind shear, the maximum swirl speed was situated below the hydrographic property core. Two other similar features were detected within our study domain, suggesting that these eddies are common and represent an effective means of fluxing warm and salty water from the boundary current into the interior. An atmospheric low-pressure system transiting south of our study area resulted in southeasterly winds prior to and during the field measurements. A comparison to hydrographic data from the Pacific Water boundary current in the Canada Basin under similar atmospheric forcing suggests that upwelling was taking place during the survey. This provides a second mechanism related to cross-stream exchange of heat and salt in this region of the Nansen Basin.
  • Article
    Coastal upwelling enhances abundance of a symbiotic diazotroph (UCYN-A) and its haptophyte host in the Arctic Ocean
    (Frontiers Media, 2022-09-05) Selden, Corday R. ; Einarsson, Sveinn V. ; Lowry, Kate E. ; Crider, Katherine E. ; Pickart, Robert S. ; Lin, Peigen ; Ashjian, Carin J. ; Chappell, P. Dreux
    The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host,Braarudosphaera bigelowii , has recently been found to fix dinitrogen (N2) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, this response suggests that upwelling may enhance N2 fixation as displaced coastal waters are advected offshore, potentially extending the duration of upwelling-induced phytoplankton blooms. Given that such events are projected to increase in intensity and number with ocean warming, upwelling-driven N2 fixation as a feedback on climate merits investigation.
  • Article
    Origin and fate of the Chukchi Slope Current using a numerical model and in-situ data
    (American Geophysical Union, 2021-04-29) Leng, Hengling ; Spall, Michael A. ; Pickart, Robert S. ; Lin, Peigen ; Bai, Xuezhi
    A regional coupled sea ice-ocean model and mooring/shipboard measurements are used to investigate the origins, seasonality, and downstream fate of the Chukchi Slope Current (CSC). Three years (2013–2015) of model integration indicates that, in the mean, the model slope current transports ∼0.45 Sv of Pacific water northwestward along the Chukchi continental slope. Only 62% of this water emanates from Barrow Canyon, while the rest (38%) is fed by a westward jet extending from the southern Beaufort Sea. The jet merges with the outflow from the canyon, forming the CSC. Due to these two distinct origins, the slope current in the model has a double velocity core at times. This is consistent with the double-core structure of the slope current seen in ship-based observations. Seasonal changes in the volume, heat, and freshwater transports by the slope current appear to be related to the changes in the upstream flows. A tracer diagnostic in the model suggests that the part of the slope current over the upper continental slope continues westward toward the East Siberian Sea, while the portion of the current overlying deeper isobaths flows northward into the Chukchi Borderland, where it ultimately gets entrained into the Beaufort Gyre. Our study provides a detailed and complete picture of the slope current.
  • Article
    Frontogenesis and variability in Denmark Strait and its influence on overflow water
    (American Meteorological Society, 2019-07-01) Spall, Michael A. ; Pickart, Robert S. ; Lin, Peigen ; von Appen, Wilken-Jon ; Mastropole, Dana M. ; Valdimarsson, Héðinn ; Haine, Thomas W. N. ; Almansi, Mattia
    A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
  • Article
    Sources and upstream pathways of the densest overflow water in the Nordic Seas
    (Nature Research, 2020-10-23) Huang, Jie ; Pickart, Robert S. ; Huang, Rui Xin ; Lin, Peigen ; Brakstad, Ailin ; Xu, Fanghua
    Overflow water from the Nordic Seas comprises the deepest limb of the Atlantic Meridional Overturning Circulation, yet questions remain as to where it is ventilated and how it reaches the Greenland-Scotland Ridge. Here we use historical hydrographic data from 2005-2015, together with satellite altimeter data, to elucidate the source regions of the Denmark Strait and Faroe Bank Channel overflows and the pathways feeding these respective sills. A recently-developed metric is used to calculate how similar two water parcels are, based on potential density and potential spicity. This reveals that the interior of the Greenland Sea gyre is the primary wintertime source of the densest portion of both overflows. After subducting, the water progresses southward along several ridge systems towards the Greenland-Scotland Ridge. Kinematic evidence supports the inferred pathways. Extending the calculation back to the 1980s reveals that the ventilation occurred previously along the periphery of the Greenland Sea gyre.
  • Article
    Ice nucleating particles carried from below a phytoplankton bloom to the arctic atmosphere
    (American Geophysical Union, 2019-07-15) Creamean, Jessie M. ; Cross, Jessica N. ; Pickart, Robert S. ; McRaven, Leah T. ; Lin, Peigen ; Pacini, Astrid ; Schmale, David G. ; Ceniceros, Julio ; Aydell, Taylor ; Colombi, N. ; Bolger, Emily ; DeMott, Paul ; Hanlon, Regina
    As Arctic temperatures rise at twice the global rate, sea ice is diminishing more quickly than models can predict. Processes that dictate Arctic cloud formation and impacts on the atmospheric energy budget are poorly understood, yet crucial for evaluating the rapidly changing Arctic. In parallel, warmer temperatures afford conditions favorable for productivity of microorganisms that can effectively serve as ice nucleating particles (INPs). Yet the sources of marine biologically derived INPs remain largely unknown due to limited observations. Here we show, for the first time, how biologically derived INPs were likely transported hundreds of kilometers from deep Bering Strait waters and upwelled to the Arctic Ocean surface to become airborne, a process dependent upon a summertime phytoplankton bloom, bacterial respiration, ocean dynamics, and wind‐driven mixing. Given projected enhancement in marine productivity, combined oceanic and atmospheric transport mechanisms may play a crucial role in provision of INPs from blooms to the Arctic atmosphere.
  • Article
    Structure and variability of the North Icelandic Jet from two years of mooring data
    (American Geophysical Union, 2019-06-04) Huang, Jie ; Pickart, Robert S. ; Valdimarsson, Héðinn ; Lin, Peigen ; Spall, Michael A. ; Xu, Fanghua
    Mooring data from September 2011 to July 2013 on the Iceland slope north of Denmark Strait are analyzed to better understand the structure and variability of the North Icelandic Jet (NIJ). Three basic configurations of the flow were identified: (1) a strong separated East Greenland Current (EGC) on the mid‐Iceland slope coincident with a weak NIJ on the upper slope, (2) a merged separated EGC and NIJ, and (3) a strong NIJ located at its climatological mean position, coincident with a weak signature of the separated EGC at the base of the Iceland slope. Our study reveals that the NIJ‐dominant scenario was present during different times of the year for the two successive mooring deployments—appearing mainly from September to February the first year and from January to July the second year. Furthermore, when this scenario was active it varied on short timescales. An energetics analysis demonstrates that the high‐frequency variability is driven by mean‐to‐eddy baroclinic conversion at the shoreward edge of the NIJ, consistent with previous modeling work. The seasonal timing of the NIJ dominant scenario is investigated in relation to the atmospheric forcing upstream of Denmark Strait. The resulting lagged correlations imply that strong turbulent heat fluxes in a localized region on the continental slope of Iceland, south of the Spar Fracture zone, lead to a stronger NIJ dominant state with a two‐month lag. This can be explained dynamically in terms of previous modeling work addressing the circulation response to dense water formation near an island.
  • Article
    Harmful algal blooms in the Alaskan Arctic: an emerging threat as the ocean warms
    (Oceanography Society, 2022-04-18) Anderson, Donald M. ; Fachon, Evangeline ; Hubbard, Katherine A. ; Lefebvre, Kathi A. ; Lin, Peigen ; Pickart, Robert S. ; Richlen, Mindy L. ; Sheffield, Gay ; Van Hemert, Caroline
    Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands.
  • Article
    The Atlantic Water boundary current in the Chukchi Borderland and Southern Canada Basin
    (American Geophysical Union, 2020-07-27) Li, Jianqiang ; Pickart, Robert S. ; Lin, Peigen ; Bahr, Frank B. ; Arrigo, Kevin R. ; Juranek, Laurie W. ; Yang, Xiao‐Yi
    Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.
  • Article
    Water mass evolution and circulation of the northeastern Chukchi Sea in summer: Implications for nutrient distributions
    (American Geophysical Union, 2019-06-07) Lin, Peigen ; Pickart, Robert S. ; McRaven, Leah T. ; Arrigo, Kevin R. ; Bahr, Frank ; Lowry, Kate E. ; Stockwell, Dean A. ; Mordy, Calvin W.
    Synoptic and historical shipboard data, spanning the period 1981–2017, are used to investigate the seasonal evolution of water masses on the northeastern Chukchi shelf and quantify the circulation patterns and their impact on nutrient distributions. We find that Alaskan coastal water extends to Barrow Canyon along the coastal pathway, with peak presence in September, while the Pacific Winter Water (WW) continually drains off the shelf through the summer. The depth‐averaged circulation under light winds is characterized by a strong Alaskan Coastal Current (ACC) and northward flow through Central Channel. A portion of the Central Channel flow recirculates anticyclonically to join the ACC, while the remainder progresses northeastward to Hanna Shoal where it bifurcates around both sides of the shoal. All of the branches converge southeast of the shoal and eventually join the ACC. The wind‐forced response has two regimes: In the coastal region the circulation depends on wind direction, while on the interior shelf the circulation is sensitive to wind stress curl. In the most common wind‐forced state—northeasterly winds and anticyclonic wind stress curl—the ACC reverses, the Central Channel flow penetrates farther north, and there is mass exchange between the interior and coastal regions. In September and October, the region southeast of Hanna Shoal is characterized by elevated amounts of WW, a shallower pycnocline, and higher concentrations of nitrate. Sustained late‐season phytoplankton growth spurred by this pooling of nutrients could result in enhanced vertical export of carbon to the seafloor, contributing to the maintenance of benthic hotspots in this region.
  • Article
    Evolution of the freshwater coastal current at the southern tip of Greenland
    (American Meteorological Society, 2018-09-11) Lin, Peigen ; Pickart, Robert S. ; Torres, Daniel J. ; Pacini, Astrid
    Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
  • Article
    Shelfbreak downwelling in the Alaskan Beaufort Sea
    (American Geophysical Union, 2019-10-16) Foukal, Nicholas P. ; Pickart, Robert S. ; Moore, G. W. K. ; Lin, Peigen
    The oceanographic response and atmospheric forcing associated with downwelling along the Alaskan Beaufort Sea shelf/slope is described using mooring data collected from August 2002 to September 2004, along with meteorological time series, satellite data, and reanalysis fields. In total, 55 downwelling events are identified with peak occurrence in July and August. Downwelling is initiated by cyclonic low‐pressure systems displacing the Beaufort High and driving westerly winds over the region. The shelfbreak jet responds by accelerating to the east, followed by a depression of isopycnals along the outer shelf and slope. The storms last 3.25 ± 1.80 days, at which point conditions relax toward their mean state. To determine the effect of sea ice on the oceanographic response, the storms are classified into four ice seasons: open water, partial ice, full ice, and fast ice (immobile). For a given wind strength, the largest response occurs during partial ice cover, while the most subdued response occurs in the fast ice season. Over the two‐year study period, the winds were strongest during the open water season; thus, the shelfbreak jet intensified the most during this period and the cross‐stream Ekman flow was largest. During downwelling, the cold water fluxed off the shelf ventilates the upper halocline of the Canada Basin. The storms approach the Beaufort Sea along three distinct pathways: a northerly route from the high Arctic, a westerly route from northern Siberia, and a southerly route from south of Bering Strait. Differences in the vertical structure of the storms are presented as well.
  • Article
    Fate of warm Pacific water in the Arctic Basin
    (American Geophysical Union, 2021-10-01) Lin, Peigen ; Pickart, Robert S. ; Våge, Kjetil ; Li, Jianqiang
    Pacific Summer Water (PSW) plays a critical role in the ecosystem of the western Arctic Ocean, impacting sea-ice melt and providing freshwater to the basin. Most of the water exits the Chukchi Sea shelf through Barrow Canyon, but the manner in which this occurs and the ultimate fate of the water remain uncertain. Using an extensive collection of historical hydrographic and velocity data, we demonstrate how the PSW outflow depends on different wind conditions, dictating whether the warm water progresses eastward or westward away from the canyon. The current carrying the water westward along the continental slope splits into different branches, influenced by the strength and extent of the Beaufort Gyre, while the eastward penetration of PSW along the shelfbreak is limited. Our results provide the first broad-scale view of how PSW is transferred from the shelf to the basin, highlighting the role of winds, boundary currents, and eddy exchange.
  • Article
    Kinematic structure and dynamics of the Denmark Strait Overflow from ship-based observations
    (American Meteorological Society, 2020-11-01) Lin, Peigen ; Pickart, Robert S. ; Jochumsen, Kerstin ; Moore, G. W. K. ; Valdimarsson, Héðinn ; Fristedt, Tim ; Pratt, Lawrence J.
    The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
  • Article
    Three-dimensional structure of a cold-core Arctic eddy interacting with the Chukchi slope current
    (American Geophysical Union, 2019-11-11) Scott, Ryan M. ; Pickart, Robert S. ; Lin, Peigen ; Münchow, Andreas ; Li, Min ; Stockwell, Dean A. ; Brearley, J. Alexander
    A rapid, high‐resolution shipboard survey, using a combination of lowered and expendable hydrographic measurements and vessel‐mounted acoustic Doppler current profiler data, provided a unique three‐dimensional view of an Arctic anti‐cyclonic cold‐core eddy. The eddy was situated 50‐km seaward of the Chukchi Sea shelfbreak over the 1,000 m isobath, embedded in the offshore side of the Chukchi slope current. The eddy core, centered near 150‐m depth, consisted of newly ventilated Pacific winter water which was high in nitrate and dissolved oxygen. Its fluorescence signal was due to phaeopigments rather than chlorophyll, indicating that photosynthesis was no longer active, consistent with an eddy age on the order of months. Subtracting out the slope current signal demonstrated that the eddy velocity field was symmetrical with a peak azimuthal speed of order 10 cm s−1. Its Rossby number was ~0.4, consistent with the fact that the measured cyclogeostrophic velocity was dominated by the geostrophic component. Different scenarios are discussed regarding how the eddy became embedded in the slope current, and what the associated ramifications are with respect to eddy spin‐down and ventilation of the Canada Basin halocline.
  • Article
    Summer surface CO2 dynamics on the Bering Sea and eastern Chukchi Sea shelves from 1989 to 2019
    (American Geophysical Union, 2021-12-17) Wang, Hongjie ; Lin, Peigen ; Pickart, Robert S. ; Cross, Jessica N.
    By compiling boreal summer (June to October) CO2 measurements from 1989 to 2019 on the Bering and eastern Chukchi Sea shelves, we find that the study areas act as a CO2 sink except when impacted by river runoff and wind-driven upwelling. The CO2 system in this area is seasonally dominated by the biological pump especially in the northern Bering Sea and near Hanna Shoal, while wind-driven upwelling of CO2-rich bottom water can cause episodic outgassing. Seasonal surface ΔfCO2 (oceanic fCO2 – air fCO2) is dominantly driven by temperature only during periods of weak CO2 outgassing in shallow nearshore areas. However, after comparing the mean summer ΔfCO2 during the periods of 1989–2013 and 2014–2019, we suggest that temperature does drive long-term, multi-decadal patterns in ΔfCO2. In the northern Chukchi Sea, rapid warming concurrent with reduced seasonal sea-ice persistence caused the regional summer CO2 sink to decrease. By contrast, increasing primary productivity caused the regional summer CO2 sink on the Bering Sea shelf to increase over time. While additional time series are needed to confirm the seasonal and annual trajectory of CO2 changes and ocean acidification in these dynamic and spatially complex ecosystems, this study provides a meaningful mechanistic analysis of recent changes in inorganic carbonate chemistry. As high-resolution time series of inorganic carbonate parameters lengthen and short-term variations are better constrained in the coming decades, we will have stronger confidence in assessing the mechanisms contributing to long-term changes in the source/sink status of regional sub-Arctic seas.