Stager
J. Curt
Stager
J. Curt
No Thumbnail Available
Search Results
Now showing
1 - 1 of 1
-
PreprintTropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period( 2017-05) Pausata, Francesco Salvatore Rocco ; Emanuel, Kerry A. ; Chiacchio, Marc ; Diro, Gulilat T. ; Zhang, Qiong ; Sushama, Laxmi ; Stager, J. Curt ; Donnelly, Jeffrey P.Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yr BP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared to the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the greening of the Sahara triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, while previous studies suggest that stronger boreal summer insolation and warmer sea surface temperatures may actually lower TC activity in the Northern Hemisphere, accounting for the Sahara greening and its associated reduction in dust emissions leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and east coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs, and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.