Hormann
Verena
Hormann
Verena
No Thumbnail Available
Search Results
Now showing
1 - 11 of 11
-
ArticleCan we detect submesoscale motions in drifter pair dispersion?(American Meteorological Society, 2019-08-20) Essink, Sebastian ; Hormann, Verena ; Centurioni, Luca R. ; Mahadevan, AmalaA cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
-
ArticleVariability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the Waning 2015 Southwest Monsoon(The Oceanography Society, 2016-06) Hormann, Verena ; Centurioni, Luca R. ; Mahadevan, Amala ; Essink, Sebastian ; D'Asaro, Eric A. ; Kumar, B. PraveenA dedicated drifter experiment was conducted in the northern Bay of Bengal during the 2015 waning southwest monsoon. To sample a variety of spatiotemporal scales, a total of 36 salinity drifters and 10 standard drifters were deployed in a tight array across a freshwater front. The salinity drifters carried for the first time a revised sensor algorithm, and its performance during the 2015 field experiment is very encouraging for future efforts. Most of the drifters were quickly entrained in a mesoscale feature centered at about 16.5°N, 89°E and stayed close together during the first month of observations. While the eddy was associated with rather homogeneous temperature and salinity characteristics, much larger variability was found outside of it toward the coastline, and some of the observed salinity patches had amplitudes in excess of 1.5 psu. To particularly quantify the smaller spatiotemporal scales, an autocorrelation analysis of the drifter salinities for the first two deployment days was performed, indicating not only spatial scales of less than 5 km but also temporal variations of the order of a few hours. The hydrographic measurements were complemented by first estimates of kinematic properties from the drifter clusters, however, more work is needed to link the different observed characteristics.
-
ArticleNovel and flexible approach to access the open ocean: Uses of sailing research vessel Lady Amber during SPURS-2.(Oceanography Society, 2019-06-14) Rainville, Luc ; Centurioni, Luca R. ; Asher, William E. ; Clayson, Carol A. ; Drushka, Kyla ; Edson, James B. ; Hodges, Benjamin A. ; Hormann, Verena ; Farrar, J. Thomas ; Schanze, Julian J. ; Shcherbina, Andrey Y.SPURS-2 (Salinity Processes in the Upper-ocean Regional Study 2) used the schooner Lady Amber, a small sailing research vessel, to deploy, service, maintain, and recover a variety of oceanographic and meteorological instruments in the eastern Pacific Ocean. Low operational costs allowed us to frequently deploy floats and drifters to collect data necessary for resolving the regional circulation of the eastern tropical Pacific. The small charter gave us the opportunity to deploy drifters in locations chosen according to current conditions, to recover and deploy various autonomous instruments in a targeted and adaptive manner, and to collect additional near-surface and atmospheric measurements in the remote SPURS-2 region.
-
ArticleFlow Encountering Abrupt Topography (FLEAT): a multiscale observational and modeling program to understand how topography affects flows in the western North Pacific(Oceanography Society, 2019-12-11) Johnston, T. M. Shaun ; Schönau, Martha ; Paluszkiewicz, Theresa ; MacKinnon, Jennifer A. ; Arbic, Brian K. ; Colin, Patrick L. ; Alford, Matthew H. ; Andres, Magdalena ; Centurioni, Luca R. ; Graber, Hans C. ; Helfrich, Karl R. ; Hormann, Verena ; Lermusiaux, Pierre F. J. ; Musgrave, Ruth C. ; Powell, Brian S. ; Qiu, Bo ; Rudnick, Daniel L. ; Simmons, Harper L. ; St. Laurent, Louis C. ; Terrill, Eric ; Trossman, David S. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; Zeide, Kristin L.Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.
-
ArticleASIRI : an ocean–atmosphere initiative for Bay of Bengal(American Meteorological Society, 2016-11-22) Wijesekera, Hemantha W. ; Shroyer, Emily L. ; Tandon, Amit ; Ravichandran, M. ; Sengupta, Debasis ; Jinadasa, S. U. P. ; Fernando, Harindra J. S. ; Agrawal, Neeraj ; Arulananthan, India K. ; Bhat, G. S. ; Baumgartner, Mark F. ; Buckley, Jared ; Centurioni, Luca R. ; Conry, Patrick ; Farrar, J. Thomas ; Gordon, Arnold L. ; Hormann, Verena ; Jarosz, Ewa ; Jensen, Tommy G. ; Johnston, T. M. Shaun ; Lankhorst, Matthias ; Lee, Craig M. ; Leo, Laura S. ; Lozovatsky, Iossif ; Lucas, Andrew J. ; MacKinnon, Jennifer A. ; Mahadevan, Amala ; Nash, Jonathan D. ; Omand, Melissa M. ; Pham, Hieu ; Pinkel, Robert ; Rainville, Luc ; Ramachandran, Sanjiv ; Rudnick, Daniel L. ; Sarkar, Sutanu ; Send, Uwe ; Sharma, Rashmi ; Simmons, Harper L. ; Stafford, Kathleen M. ; St. Laurent, Louis C. ; Venayagamoorthy, Subhas K. ; Venkatesan, Ramasamy ; Teague, William J. ; Wang, David W. ; Waterhouse, Amy F. ; Weller, Robert A. ; Whalen, Caitlin B.Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
-
ArticleEddies, topography, and the abyssal flow by the Kyushu-Palau Ridge near Velasco Reef(The Oceanography Society, 2019-12-11) Andres, Magdalena ; Siegelman, Mika ; Hormann, Verena ; Musgrave, Ruth C. ; Merrifield, Sophia T. ; Rudnick, Daniel L. ; Merrifield, Mark ; Alford, Matthew H. ; Voet, Gunnar ; Wijesekera, Hemantha W. ; MacKinnon, Jennifer A. ; Centurioni, Luca R. ; Nash, Jonathan D. ; Terrill, EricPalau, an island group in the tropical western North Pacific at the southern end of Kyushu-Palau Ridge, sits near the boundary between the westward-flowing North Equatorial Current (NEC) and the eastward-flowing North Equatorial Countercurrent. Combining remote-sensing observations of the sea surface with an unprecedented in situ set of subsurface measurements, we examine the flow near Palau with a particular focus on the abyssal circulation and on the deep expression of mesoscale eddies in the region. We find that the deep currents time-averaged over 10 months are generally very weak north of Palau and not aligned with the NEC in the upper ocean. This weak abyssal flow is punctuated by the passing of mesoscale eddies, evident as sea surface height anomalies, that disrupt the mean flow from the surface to the seafloor. Eddy influence is observed to depths exceeding 4,200 m. These deep-reaching mesoscale eddies typically propagate westward past Palau, and as they do, any associated deep flows must contend with the topography of the Kyushu-Palau Ridge. This interaction leads to vertical structure far below the main thermocline. Observations examined here for one particularly strong and well-sampled eddy suggest that the flow was equivalent barotropic in the far field east and west of the ridge, with a more complicated vertical structure in the immediate vicinity of the ridge by the tip of Velasco Reef.
-
ArticleGlobal in situ observations of essential climate and ocean variables at the air-sea interface(Frontiers Media, 2019-07-25) Centurioni, Luca R. ; Turton, Jon ; Lumpkin, Rick ; Braasch, Lancelot ; Brassington, Gary ; Chao, Yi ; Charpentier, Etienne ; Chen, Zhaohui ; Corlett, Gary ; Dohan, Kathleen ; Donlon, Craig ; Gallage, Champika ; Hormann, Verena ; Ignatov, Alexander ; Ingleby, Bruce ; Jensen, Robert ; Kelly-Gerreyn, Boris A. ; Koszalka, Inga M. ; Lin, Xiaopei ; Lindstrom, Eric ; Maximenko, Nikolai ; Merchant, Christopher J. ; Minnett, Peter J. ; O’Carroll, Anne ; Paluszkiewicz, Theresa ; Poli, Paul ; Poulain, Pierre Marie ; Reverdin, Gilles ; Sun, Xiujun ; Swail, Val ; Thurston, Sidney ; Wu, Lixin ; Yu, Lisan ; Wang, Bin ; Zhang, DongxiaoThe air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
-
ArticleAutonomous multi-platform observations during the Salinity Processes in the Upper-ocean Regional Study(Oceanography Society, 2017-06) Lindstrom, Eric ; Shcherbina, Andrey Y. ; Rainville, Luc ; Farrar, J. Thomas ; Centurioni, Luca R. ; Dong, Shenfu ; D'Asaro, Eric A. ; Eriksen, Charles C. ; Fratantoni, David M. ; Hodges, Benjamin A. ; Hormann, Verena ; Kessler, William S. ; Lee, Craig M. ; Riser, Stephen C. ; St. Laurent, Louis C. ; Volkov, Denis L.The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.
-
ArticleOn characterizing ocean kinematics from surface drifters(American Meteorological Society, 2022-08-01) Essink, Sebastian ; Hormann, Verena ; Centurioni, Luca R. ; Mahadevan, AmalaHorizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.
-
ArticleNorthern Arabian Sea Circulation-Autonomous Research (NASCar) : a research initiative based on autonomous sensors(Oceanography Society, 2017-06) Centurioni, Luca R. ; Hormann, Verena ; Talley, Lynne D. ; Arzeno, Isabella B. ; Beal, Lisa M. ; Caruso, Michael J. ; Conry, Patrick ; Echols, Rosalind ; Fernando, Harindra J. S. ; Giddings, Sarah N. ; Gordon, Arnold L. ; Graber, Hans C. ; Harcourt, Ramsey R. ; Jayne, Steven R. ; Jensen, Tommy G. ; Lee, Craig M. ; Lermusiaux, Pierre F. J. ; L’Hegaret, Pierre ; Lucas, Andrew J. ; Mahadevan, Amala ; McClean, Julie L. ; Pawlak, Geno ; Rainville, Luc ; Riser, Stephen C. ; Seo, Hyodae ; Shcherbina, Andrey Y. ; Skyllingstad, Eric D. ; Sprintall, Janet ; Subrahmanyam, Bulusu ; Terrill, Eric ; Todd, Robert E. ; Trott, Corinne ; Ulloa, Hugo N. ; Wang, HeThe Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.
-
ArticleBay of Bengal intraseasonal oscillations and the 2018 monsoon onset(American Meteorological Society, 2021-10-01) Shroyer, Emily L. ; Tandon, Amit ; Sengupta, Debasis ; Fernando, Harindra J. S. ; Lucas, Andrew J. ; Farrar, J. Thomas ; Chattopadhyay, Rajib ; de Szoeke, Simon P. ; Flatau, Maria ; Rydbeck, Adam ; Wijesekera, Hemantha W. ; McPhaden, Michael J. ; Seo, Hyodae ; Subramanian, Aneesh C. ; Venkatesan, Ramasamy ; Joseph, Jossia K. ; Ramsundaram, S. ; Gordon, Arnold L. ; Bohman, Shannon M. ; Pérez, Jaynise ; Simoes-Sousa, Iury T. ; Jayne, Steven R. ; Todd, Robert E. ; Bhat, G. S. ; Lankhorst, Matthias ; Schlosser, Tamara L. ; Adams, Katherine ; Jinadasa, S. U. P. ; Mathur, Manikandan ; Mohapatra, Mrutyunjay ; Pattabhi Rama Rao, Eluri ; Sahai, Atul Kumar ; Sharma, Rashmi ; Lee, Craig ; Rainville, Luc ; Cherian, Deepak A. ; Cullen, Kerstin ; Centurioni, Luca R. ; Hormann, Verena ; MacKinnon, Jennifer A. ; Send, Uwe ; Anutaliya, Arachaporn ; Waterhouse, Amy F. ; Black, Garrett S. ; Dehart, Jeremy A. ; Woods, Kaitlyn M. ; Creegan, Edward ; Levy, Gad ; Kantha, Lakshmi ; Subrahmanyam, BulusuIn the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.