Le Boyer
Arnaud
Le Boyer
Arnaud
No Thumbnail Available
Search Results
Now showing
1 - 4 of 4
-
ArticleAdrift upon a salinity-stratified sea : a view of upper-ocean processes in the Bay of Bengal during the southwest monsoon(The Oceanography Society, 2016-06) Lucas, Andrew J. ; Nash, Jonathan D. ; Pinkel, Robert ; MacKinnon, Jennifer A. ; Tandon, Amit ; Mahadevan, Amala ; Omand, Melissa M. ; Freilich, Mara ; Sengupta, Debasis ; Ravichandran, M. ; Le Boyer, ArnaudThe structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument’s roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular “barrier-layer” stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere above.
-
ArticleDouble diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea(American Meteorological Society, 2022-02-01) Fine, Elizabeth C. ; MacKinnon, Jennifer A. ; Alford, Matthew H. ; Middleton, Leo ; Taylor, John R. ; Mickett, John B. ; Cole, Sylvia T. ; Couto, Nicole ; Le Boyer, Arnaud ; Peacock, ThomasPacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
-
ArticleInternal wave activity in the deep Gulf of Mexico(Frontiers Media, 2023-11-15) Meunier, Thomas ; Le Boyer, Arnaud ; Molodtsov, Sergey ; Bower, Amy S. ; Furey, Heather H. ; Robbins, Pelle E.Internal wave activity in the Gulf of Mexico (GoM) is investigated using a fleet of profiling floats. The floats continuously measured temperature and salinity as they drifted at a parking depth of 1500 dbar, allowing for the reconstruction of 2615 time series of isopycnal displacements. Thanks to the dense sampling of the eastern part of the GoM (east of 90°W), the geographical distribution of the internal waves displacement variance and available potential energy (APE) is revealed. The Loop Current (LC) influence region, between the Yucatan shelf to the west and the southern West Florida shelf to the east exhibits increased displacement variance and APE both in the continuum and near-inertial bands, while the north-eastern and central GoM show reduced internal wave activity. As the LC position fluctuates between a retracted and extended mode, we assessed the impact of the presence or absence of the LC in the increased internal wave activity region. It is shown that in the LC influence region, APE is increased (decreased) when the LC is present (absent), suggesting a strong control of the LC on deep internal waves activity. The 1500 dbar flow velocity, bottom roughness, and float altitude also seem to contribute to increased internal waves APE, but their influence is more subtle. Oppositely, no correlation with wind speed or wind intermittency is found.
-
ArticleObservations of diapycnal upwelling within a sloping submarine canyon(Nature Research, 2024-06-26) Wynne-Cattanach, Bethan L. ; Couto, Nicole ; Drake, Henri F. ; Ferrari, Raffaele ; Le Boyer, Arnaud ; Mercier, Herle ; Messias, Marie-Jose ; Ruan, Xiaozhou ; Spingys, Carl P. ; van Haren, Hans ; Voet, Gunnar ; Polzin, Kurt L. ; Naveira Garabato, Alberto C. ; Alford, Matthew H.Small-scale turbulent mixing drives the upwelling of deep water masses in the abyssal ocean as part of the global overturning circulation1. However, the processes leading to mixing and the pathways through which this upwelling occurs remain insufficiently understood. Recent observational and theoretical work2,3,4,5 has suggested that deep-water upwelling may occur along the ocean’s sloping seafloor; however, evidence has, so far, been indirect. Here we show vigorous near-bottom upwelling across isopycnals at a rate of the order of 100 metres per day, coupled with adiabatic exchange of near-boundary and interior fluid. These observations were made using a dye released close to the seafloor within a sloping submarine canyon, and they provide direct evidence of strong, bottom-focused diapycnal upwelling in the deep ocean. This supports previous suggestions that mixing at topographic features, such as canyons, leads to globally significant upwelling3,6,7,8. The upwelling rates observed were approximately 10,000 times higher than the global average value required for approximately 30 × 106 m3 s−1 of net upwelling globally9.