Guo Weifu

No Thumbnail Available
Last Name
Guo
First Name
Weifu
ORCID
0000-0002-1605-1019

Search Results

Now showing 1 - 11 of 11
  • Article
    Seawater temperature and buffering capacity modulate coral calcifying pH
    (Nature Research, 2019-02-04) Guo, Weifu
    Scleractinian corals promote the precipitation of their carbonate skeleton by elevating the pH and dissolved inorganic carbon (DIC) concentration of their calcifying fluid above that of seawater. The fact corals actively regulate their calcifying fluid chemistry implies the potential for acclimation to ocean acidification. However, the extent to which corals can adjust their regulation mechanism in the face of decreasing ocean pH has not been rigorously tested. Here I present a numerical model simulating pH and DIC up-regulation by corals, and use it to determine the relative importance of physiological regulation versus seawater conditions in controlling coral calcifying fluid chemistry. I show that external seawater temperature and buffering capacity exert the first-order control on the extent of pH elevation in the calcifying fluid and explain most of the observed inter- and intra-species variability. Conversely, physiological regulation, represented by the interplay between enzymatic proton pumping, carbon influx and the exchange of calcifying fluid with external seawater, contributes to some variability but remain relatively constant as seawater conditions change. The model quantitatively reproduces variations of calcifying fluid pH in natural Porites colonies, and predicts an average 0.16 unit decrease in Porites calcifying fluid pH, i.e., ~43% increase in H+ concentration, by the end of this century as a combined result of projected ocean warming and acidification, highlighting the susceptibility of coral calcification to future changes in ocean conditions. In addition, my findings support the development of coral-based seawater pH proxies, but suggest the influences of physicochemical and biological factors other than seawater pH must be considered.
  • Preprint
    A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period
    ( 2015-07) Thornalley, David J. R. ; Bauch, H. A. ; Gebbie, Geoffrey A. ; Guo, Weifu ; Ziegler, Martin ; Bernasconi, Stefano M. ; Barker, Stephen ; Skinner, Luke C. ; Yu, Jimin
    Changes in the formation of dense water in the Arctic Ocean and Nordic Seas (the ‘Arctic Mediterranean’, AM) likely contributed to the altered climate of the last glacial period. We examine past changes in AM circulation by reconstructing 14C ventilation ages of the deep Nordic Seas over the last 30,000 years. Our results show that the deep glacial AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest the deep glacial AM was ~2-3°C warmer than modern; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to melting sea-ice and icebergs, as well as proximal terminal ice-sheet margins.
  • Article
    Clumped isotope composition of cold-water corals : a role for vital effects?
    (Elsevier, 2016-02-02) Spooner, Peter T. ; Guo, Weifu ; Robinson, Laura F. ; Thiagarajan, Nivedita ; Hendry, Katharine R. ; Rosenheim, Brad E. ; Leng, Melanie J.
    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes ‘clumping’ into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope ‘vital effects’ are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals’ calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.
  • Article
    Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures
    (Nature Research, 2020-08-10) Bajnai, David ; Guo, Weifu ; Spötl, Christoph ; Coplen, Tyler B. ; Methner, Katharina ; Löffler, Niklas ; Krsnik, Emilija ; Gischler, Eberhard ; Hansen, Maximilian ; Henkel, Daniela ; Price, Gregory D. ; Raddatz, Jacek ; Scholz, Denis ; Fiebig, Jens
    Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.
  • Article
    Ocean acidification has impacted coral growth on the great barrier reef
    (American Geophysical Union, 2020-08-27) Guo, Weifu ; Bokade, Rohit ; Cohen, Anne L. ; Mollica, Nathaniel R. ; Leung, Muriel ; Brainard, Russell E.
    Ocean acidification (OA) reduces the concentration of seawater carbonate ions that stony corals need to produce their calcium carbonate skeletons and is considered a significant threat to the functional integrity of coral reef ecosystems. However, detection and attribution of OA impact on corals in nature are confounded by concurrent environmental changes, including ocean warming. Here we use a numerical model to isolate the effects of OA and temperature and show that OA alone has caused 13 ± 3% decline in the skeletal density of massive Porites corals on the Great Barrier Reef since 1950. This OA‐induced thinning of coral skeletons, also evident in Porites from the South China Sea but not in the central Pacific, reflects enhanced acidification of reef water relative to the surrounding open ocean. Our finding reinforces concerns that even corals that might survive multiple heatwaves are structurally weakened and increasingly vulnerable to the compounding effects of climate change.
  • Article
    Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod
    (National Academy of Sciences, 2023-04-11) Tagliavento, Mattia ; Davies, Amelia J. ; Bernecker, Miguel ; Staudigel, Philip T. ; Dawson, Robin R. ; Dietzel, Martin ; Götschl, Katja ; Guo, Weifu ; Schulp, Anne S. ; Therrien, François ; Zelenitsky, Darla K. ; Gerdes, Axel ; Müller, Wolfgang ; Fiebig, Jens
    The dinosaur–bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.
  • Article
    Biologically driven isotopic fractionations in bivalves: from palaeoenvironmental problem to palaeophysiological proxy
    (Wiley, 2023-02-26) Curley, Allison N. ; Petersen, Sierra V. ; Edie, Stewart M. ; Guo, Weifu
    Traditional bulk stable isotope (δ18O and δ13C) and clumped isotope (?47) records from bivalve shells provide invaluable histories of Earth's local and global climate change. However, biologically driven isotopic fractionations (BioDIFs) can overprint primary environmental signals in the shell. Here, we explore how conventional measurements of δ18O, δ13C, and ?47 in bivalve shells can be re-interpreted to investigate these physiological processes deliberately. Using intrashell ?47 and δ18O alignment as a proxy for equilibrium state, we separately examine fractionations and/or disequilibrium occurring in the two major stages of the biomineralisation process: the secretion of the extrapallial fluid (EPF) and the precipitation of shell material from the EPF. We measured δ18O, δ13C, and ?47 in fossil shells representing five genera (Lahillia, Dozyia, Eselaevitrigonia, Nordenskjoldia, and Cucullaea) from the Maastrichtian age [66?69 million years ago (Ma)] López de Bertodano Formation on Seymour Island, Antarctica. Material was sampled from both the outer and inner shell layers (OSL and ISL, respectively), which precipitate from separate EPF reservoirs. We find consistent δ18O values across the five taxa, indicating that the composition of the OSL can be a reliable palaeoclimate proxy. However, relative to the OSL baseline, ISLs of all taxa show BioDIFs in one or more isotopic parameters. We discuss/hypothesise potential origins of these BioDIFs by synthesising isotope systematics with the physiological processes underlying shell biomineralisation. We propose a generalised analytical and interpretive framework that maximises the amount of palaeoenvironmental and palaeobiological information that can be derived from the isotopic composition of fossil shell material, even in the presence of previously confounding ?vital effects?. Applying this framework in deep time can expand the utility of δ18O, δ13C, and ?47 measurements from proxies of past environments to proxies for certain biomineralisation strategies across space, time, and phylogeny among Bivalvia and other calcifying organisms.
  • Preprint
    Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems : highlighting the role of isomers in the sulfite and sulfoxylate systems
    ( 2016-09) Eldridge, Daniel L. ; Guo, Weifu ; Farquhar, James
    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30–40H2O clusters spanning the range of sulfur oxidation state (Sn, n = −2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148–0.5159, 36/34κ ≈ 1.89–1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3−T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS−(aq), SO42−(aq)/H2ST(aq), S2O32−(aq) (intramolecular), and S2O32−(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3−T/SO32− major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3−/SO32− fractionation factor (1000ln34α(HS)bisulfite-sulfite = 19.9‰, 25 °C) relative to the (HO)SO2−/SO32− fractionation factor (1000ln34α(HO)bisulfite–sulfite = −2.2‰, 25 °C), and the increased stability of the (HS)O3− isomer with increasing temperature. We argue that isomerization phenomenon should be considered in models of the sulfur cycle, including models that describe the overall sulfur isotope fractionations associated with microbial metabolism (e.g., microbial sulfate reduction).
  • Article
    Deglacial temperature and carbonate saturation state variability in the tropical Atlantic at Antarctic Intermediate Water Depths
    (Wiley, 2023-08-26) Oppo, Delia W. ; Lu, Wanyi ; Huang, Kuo-Fang ; Umling, Natalie E. ; Guo, Weifu ; Yu, Jimin ; Curry, William B. ; Marchitto, Thomas M. ; Wang, Shouyi
    The Atlantic Meridional Overturning Circulation (AMOC) is characterized by northward flow in the upper ocean and southward flow in the deep ocean. Understanding how the AMOC has changed in the past, and how such changes have affected surface climate and the distribution of ocean heat, carbon, and nutrients is important but challenging, as reconstructions of subsurface ocean properties are sometimes ambiguous. Here, we use the chemical composition of seafloor shells from a site in the western tropical Atlantic Ocean at ∼950 m water depth, within the northward-flowing limb of the AMOC, to reconstruct temperature, nutrients, and carbon content during the end of the last Ice Age, an interval when AMOC strength is believed to have varied. Our results support a link between AMOC strength and tropical Atlantic nutrient content, and further suggest that both rising atmospheric CO2 and AMOC variations influenced temperatures and carbon in the subsurface tropical Atlantic Ocean.
  • Article
    Development of a quantum cascade laser absorption spectrometer for simultaneous measurement of 13C-18O and 18O-18O clumping in CO2
    (Wiley, 2024-06-18) Wieman, Scott T. ; Kapit, Jason ; Michel, Anna P. M. ; Guo, Weifu
    Dual clumped isotope paleothermometry determines carbonate formation temperatures by measuring the frequency of 13C–18O (∆638) and 18O–18O (∆828) pairs in carbonates. It resolves isotopic kinetic biases and thus enables more accurate paleotemperature reconstructions. However, high-precision measurements of 18O–18O clumping using current techniques requires large sample sizes and long acquisition times. We developed a mid-infrared isotope ratio laser spectrometer (IRLS) for simultaneous measurement of the isotopologue ratios ∆638 and ∆828 in gas-phase carbon dioxide (CO2) at room temperature. Our IRLS uses a single laser scanning from 2290.7 to 2291.1 cm−1 and a 31 m pathlength optical cell, and it simultaneously measures the five isotopologues required for calculating ∆638 and ∆828: 16O12C16O, 16O13C16O, 16O12C18O, 16O13C18O, and 18O12C18O. In addition, our IRLS can measure 16O12C17O, enabling ∆17O analysis. At ~20°C and a CO2 pressure of ~2 Torr, our IRLS system achieved precisions of 0.128‰ and 0.140‰ within 20 s for abundances of the clumped isotopologues 16O13C18O and 18O12C18O, respectively, and precisions of 0.267‰, 0.245‰, and 0.128‰ for 16O12C16O, 16O13C16O, and 16O12C18O. This yielded precisions of 0.348‰ (∆638) and 0.302‰ (∆828) within 25 s. Simulated sample–reference switching highlights the potential of our system and the need for further development. We demonstrated simultaneous measurements of ∆638 and ∆828 in CO2 to precisions of <0.35‰ within 25 s using a room-temperature, single-laser IRLS. Future developments on better resolving 16O12C16O and 16O13C16O peaks and system temperature control could further improve the measurement precision.
  • Dataset
    Voltage scans from a prototype hollow core fiber isotope ratio laser spectrometer
    (Woods Hole Oceanographic Institution, 2024-08-22) Wieman, Scott T. ; Kapit, Jason ; Guo, Weifu ; Michel, Anna P. M.
    This dataset consists of 900 one-second-long voltage acquisitions across 2000 detector channels from a prototype hollow core fiber isotope ratio laser spectrometer developed and operated at the Woods Hole Oceanographic Institution’s David Center for Ocean Innovation. Each acquisition covers a spectral range of ~2290.55 to 2299.15 cm-1. The operational conditions are 2.5 torr of pure CO2 in a 1m-long hollow core fiber with an inner diameter of 200 µm at room temperature (~20ºC). The laser was scanned across this spectral range at 50kHz and each one-second acquisition is the average of 50000 individual spectral scans within that one second.